Characterization of Quaternary Threshold Functions in the Vilenkin-Chrestenson Basis

I. Prokić
{"title":"Characterization of Quaternary Threshold Functions in the Vilenkin-Chrestenson Basis","authors":"I. Prokić","doi":"10.1109/ISMVL.2018.00011","DOIUrl":null,"url":null,"abstract":"This paper deals with the characterization of threshold functions defined on n-dimensional quaternary inputs using the representation of a function in the Vilenkin-Chrestenson basis. It is shown that such a function is uniquely characterized by (2n + 2)-dimensional vector of parameters, that correspond to the Vilenkin-Chrestenson spectrum. (2n + 1) of them correspond to the spectral coefficients of the function and the remaining one correspond to the zero-moment spectral coefficient of the character of the function. We apply the same reasoning to the class of ternary threshold functions as an alternative way to derive their spectral characterization.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with the characterization of threshold functions defined on n-dimensional quaternary inputs using the representation of a function in the Vilenkin-Chrestenson basis. It is shown that such a function is uniquely characterized by (2n + 2)-dimensional vector of parameters, that correspond to the Vilenkin-Chrestenson spectrum. (2n + 1) of them correspond to the spectral coefficients of the function and the remaining one correspond to the zero-moment spectral coefficient of the character of the function. We apply the same reasoning to the class of ternary threshold functions as an alternative way to derive their spectral characterization.
vilenkin - christensen基第四纪阈值函数的表征
本文讨论了在n维四元输入上定义的阈值函数的表征,使用维伦金-克里斯特森基中的函数表示。证明了该函数具有(2n + 2)维参数向量的唯一特征,这些参数向量对应于vilenkin - christensen谱。其中(2n + 1)对应函数的谱系数,其余1对应函数特征的零矩谱系数。我们将相同的推理应用于三元阈值函数类,作为推导其谱表征的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信