Generation of ultrahigh fields by microbubble implosion

M. Murakami, A. Arefiev, M. A. Zosa, J. Honrubia
{"title":"Generation of ultrahigh fields by microbubble implosion","authors":"M. Murakami, A. Arefiev, M. A. Zosa, J. Honrubia","doi":"10.26577/phst-2019-2-p4","DOIUrl":null,"url":null,"abstract":"Breaking the 100-MeV barrier for proton acceleration will help elucidate fundamental physics and advancepractical applications from inertial confinement fusion to tumor therapy. A novel concept of “microbubbleimplosion (MBI)” is proposed. In the MBI concept, bubble implosion combines micro-bubbles and ultraintenselaser pulses of 1020 – 1022 Wcm-2 to generate ultrahigh fields and relativistic protons. The bubblewall protons are subject to volumetric acceleration toward the center due to the spherically symmetricelectrostatic force generated by hot electrons filling the bubble. Such an implosion can generate an ultrahighdensity proton core of nanometer size on the collapse, which results in an ultrahigh electrostatic field toemit energetic protons in the relativistic regime. Laser intensity scaling is investigated for acceleratedproton energy and attainable electrostatic field using MBI. Three-dimensional particle-in-cell andmolecular dynamics simulations are conducted in a complementary manner. As a result, underlying physicsof MBI are revealed such as bubble-pulsation and ultrahigh energy densities, which are higher by orders ofmagnitude than, for example, those expected in a fusion-igniting core of inertially confined plasma. MBIhas potential as a plasma-optical device, which optimally amplifies an applied laser intensity by a factor oftwo orders of magnitude; thus, MBI is proposed to be a novel approach to the Schwinger limit.","PeriodicalId":321102,"journal":{"name":"Physical Sciences and Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Sciences and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26577/phst-2019-2-p4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breaking the 100-MeV barrier for proton acceleration will help elucidate fundamental physics and advancepractical applications from inertial confinement fusion to tumor therapy. A novel concept of “microbubbleimplosion (MBI)” is proposed. In the MBI concept, bubble implosion combines micro-bubbles and ultraintenselaser pulses of 1020 – 1022 Wcm-2 to generate ultrahigh fields and relativistic protons. The bubblewall protons are subject to volumetric acceleration toward the center due to the spherically symmetricelectrostatic force generated by hot electrons filling the bubble. Such an implosion can generate an ultrahighdensity proton core of nanometer size on the collapse, which results in an ultrahigh electrostatic field toemit energetic protons in the relativistic regime. Laser intensity scaling is investigated for acceleratedproton energy and attainable electrostatic field using MBI. Three-dimensional particle-in-cell andmolecular dynamics simulations are conducted in a complementary manner. As a result, underlying physicsof MBI are revealed such as bubble-pulsation and ultrahigh energy densities, which are higher by orders ofmagnitude than, for example, those expected in a fusion-igniting core of inertially confined plasma. MBIhas potential as a plasma-optical device, which optimally amplifies an applied laser intensity by a factor oftwo orders of magnitude; thus, MBI is proposed to be a novel approach to the Schwinger limit.
微泡内爆产生超高场
突破100兆电子伏的质子加速障碍将有助于阐明基础物理学,并推进从惯性约束聚变到肿瘤治疗的实际应用。提出了“微气泡内爆”的新概念。在MBI概念中,气泡内爆将微气泡和1020 - 1022 Wcm-2的超强激光脉冲结合起来,产生超高场和相对论性质子。由于充满气泡的热电子产生的球对称静电力,气泡壁质子受到向中心的体积加速度。这种内爆可以在坍缩时产生纳米级的超高密度质子核,从而产生超高的静电场,发射出相对论态的高能质子。利用MBI研究了加速质子能量和可达静电场的激光强度标度。三维细胞内粒子和分子动力学模拟以互补的方式进行。结果,揭示了MBI的潜在物理特性,如气泡脉动和超高能量密度,它们比在惯性受限等离子体的聚变点燃核心中所期望的要高几个数量级。mbia具有作为等离子光学器件的潜力,可以将所施加的激光强度最佳地放大两个数量级;因此,MBI被认为是一种求解Schwinger极限的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信