PyGASP: Python-based GPU-accelerated signal processing

Nathaniel Bowman, Erin Carrier, G. Wolffe
{"title":"PyGASP: Python-based GPU-accelerated signal processing","authors":"Nathaniel Bowman, Erin Carrier, G. Wolffe","doi":"10.1109/EIT.2013.6632683","DOIUrl":null,"url":null,"abstract":"Computational science is the application of computing technology to evaluate mathematical models in order to solve problems in the scientific disciplines. Many scientific fields are experiencing an explosion of data, with signal processing being a crucial technique for aiding interpretation and for distinguishing meaningful information from noise. This process requires tools that can be easily used by researchers from all branches of science and which are fast enough to manage the enormous amount of data being generated. This paper presents such a toolkit: an intuitive, high-performance Python library for facilitating large-scale signal analysis. Of particular interest is a novel PyCUDA implementation of the Discrete Wavelet Transform (DWT), several applications of which are demonstrated in this paper.","PeriodicalId":201202,"journal":{"name":"IEEE International Conference on Electro-Information Technology , EIT 2013","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Electro-Information Technology , EIT 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2013.6632683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computational science is the application of computing technology to evaluate mathematical models in order to solve problems in the scientific disciplines. Many scientific fields are experiencing an explosion of data, with signal processing being a crucial technique for aiding interpretation and for distinguishing meaningful information from noise. This process requires tools that can be easily used by researchers from all branches of science and which are fast enough to manage the enormous amount of data being generated. This paper presents such a toolkit: an intuitive, high-performance Python library for facilitating large-scale signal analysis. Of particular interest is a novel PyCUDA implementation of the Discrete Wavelet Transform (DWT), several applications of which are demonstrated in this paper.
PyGASP:基于python的gpu加速信号处理
计算科学是应用计算技术来评估数学模型以解决科学学科中的问题。许多科学领域正在经历数据爆炸,信号处理是帮助解释和从噪声中区分有意义信息的关键技术。这一过程需要能够被所有科学分支的研究人员轻松使用的工具,并且需要足够快地管理生成的大量数据。本文提出了这样一个工具包:一个直观的、高性能的Python库,用于促进大规模信号分析。特别感兴趣的是一种新颖的离散小波变换(DWT)的PyCUDA实现,本文演示了它的几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信