Far Range Transponder; Field-physical basis for electrically coupled bidirectional far range transponders

Konstantin Meyl
{"title":"Far Range Transponder; Field-physical basis for electrically coupled bidirectional far range transponders","authors":"Konstantin Meyl","doi":"10.1109/RFIDEURASIA.2007.4368101","DOIUrl":null,"url":null,"abstract":"With the current RFID technology the transfer of energy takes place on a chip card by means of longitudinal wave components in close range of the transmitting antenna. Those are scalar waves, which spread towards the electrical or the magnetic field pointer. In the wave equation with reference to the Maxwell field equations, these wave components are set to zero, why only postulated model computations exist, after which the range is limited to the sixth part of the wavelength. A goal of this paper is to create, by consideration of the scalar wave components in the wave equation, the physical conditions for the development of scalar wave transponders which are operable beyond the close range. The energy is transferred with the same carrier wave as the information and not over separated ways as with RFID systems. Besides the bi-directional signal transmission, the energy transfer in both directions is additionally possible because of the resonant coupling between transmitter and receiver. First far range transponders developed on the basis of the extended field equations are already functional as prototypes, according to the US-Patent No. 787,412 of Nikola Tesla, New York 1905.","PeriodicalId":240968,"journal":{"name":"2007 1st Annual RFID Eurasia","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 1st Annual RFID Eurasia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIDEURASIA.2007.4368101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the current RFID technology the transfer of energy takes place on a chip card by means of longitudinal wave components in close range of the transmitting antenna. Those are scalar waves, which spread towards the electrical or the magnetic field pointer. In the wave equation with reference to the Maxwell field equations, these wave components are set to zero, why only postulated model computations exist, after which the range is limited to the sixth part of the wavelength. A goal of this paper is to create, by consideration of the scalar wave components in the wave equation, the physical conditions for the development of scalar wave transponders which are operable beyond the close range. The energy is transferred with the same carrier wave as the information and not over separated ways as with RFID systems. Besides the bi-directional signal transmission, the energy transfer in both directions is additionally possible because of the resonant coupling between transmitter and receiver. First far range transponders developed on the basis of the extended field equations are already functional as prototypes, according to the US-Patent No. 787,412 of Nikola Tesla, New York 1905.
远程应答器;电耦合双向远程应答器的场物理基础
在目前的RFID技术中,能量的传递是通过靠近发射天线的纵波分量在芯片卡上进行的。这些是标量波,它们向电场或磁场指针传播。在参考麦克斯韦场方程的波动方程中,这些波分量被设为零,为什么只存在假设的模型计算,之后的范围被限制在波长的六分之一。本文的目的是通过考虑波动方程中的标量波分量,为研制可在近距离以外工作的标量波转发器创造物理条件。能量通过与信息相同的载波传输,而不是像RFID系统那样通过分离的方式传输。除了信号的双向传输外,由于发射器和接收器之间的谐振耦合,还可以实现双向能量传输。根据1905年纽约尼古拉·特斯拉的美国专利号787,412,在扩展场方程的基础上开发的第一个远程应答器已经作为原型功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信