Online vehicle detection using Haar-like, LBP and HOG feature based image classifiers with stereo vision preselection

Daniel Neumann, T. Langner, Fritz Ulbrich, Dorothee Spitta, D. Goehring
{"title":"Online vehicle detection using Haar-like, LBP and HOG feature based image classifiers with stereo vision preselection","authors":"Daniel Neumann, T. Langner, Fritz Ulbrich, Dorothee Spitta, D. Goehring","doi":"10.1109/IVS.2017.7995810","DOIUrl":null,"url":null,"abstract":"Environment sensing is an essential property for autonomous cars. With the help of sensors, nearby objects can be detected and localized. Furthermore, the creation of an accurate model of the surroundings is crucial for high-level planning. In this paper, we focus on vehicle detection based on stereo camera images. While stereoscopic computer vision is applied to localize objects in the environment, the objects are then identified by image classifiers. We implemented and evaluated several algorithms from image based pattern recognition in our autonomous car framework, using HOG-, LBP-, and Haar-like features. We will present experimental results using real traffic data with focus on classification accuracy and execution times.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Environment sensing is an essential property for autonomous cars. With the help of sensors, nearby objects can be detected and localized. Furthermore, the creation of an accurate model of the surroundings is crucial for high-level planning. In this paper, we focus on vehicle detection based on stereo camera images. While stereoscopic computer vision is applied to localize objects in the environment, the objects are then identified by image classifiers. We implemented and evaluated several algorithms from image based pattern recognition in our autonomous car framework, using HOG-, LBP-, and Haar-like features. We will present experimental results using real traffic data with focus on classification accuracy and execution times.
基于Haar-like、LBP和HOG特征的图像分类器的立体视觉预选在线车辆检测
环境感知是自动驾驶汽车的基本特性。在传感器的帮助下,可以检测和定位附近的物体。此外,创建准确的环境模型对于高层规划至关重要。本文主要研究基于立体摄像机图像的车辆检测。当立体计算机视觉应用于定位环境中的物体时,物体随后被图像分类器识别。在我们的自动驾驶汽车框架中,我们使用HOG-、LBP-和Haar-like特征,实现并评估了几种基于图像的模式识别算法。我们将展示使用真实流量数据的实验结果,重点关注分类准确性和执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信