S. Ahmed, R. Doshi, Sheldon H. D. Lee, R. Kumar, M. Krumpelt
{"title":"Partial oxidation reformer development for fuel cell vehicles","authors":"S. Ahmed, R. Doshi, Sheldon H. D. Lee, R. Kumar, M. Krumpelt","doi":"10.1109/IECEC.1997.661878","DOIUrl":null,"url":null,"abstract":"A bench-scale partial oxidation reformer that is compact (1.8 L) and light-weight has been demonstrated with methanol fuel. The hydrogen output from the reactor had a lower heating value of 12 kW. The gas contained over 50% hydrogen and less than 1% carbon monoxide. A novel class of catalyst materials has been identified which is able to convert various hydrocarbons, including gasoline, to a hydrogen-rich product gas. Tested in a micro-reactor with gasoline and oxygen at 760/spl deg/C, these catalysts yielded a product gas containing over 60% hydrogen.","PeriodicalId":183668,"journal":{"name":"IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECEC.1997.661878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A bench-scale partial oxidation reformer that is compact (1.8 L) and light-weight has been demonstrated with methanol fuel. The hydrogen output from the reactor had a lower heating value of 12 kW. The gas contained over 50% hydrogen and less than 1% carbon monoxide. A novel class of catalyst materials has been identified which is able to convert various hydrocarbons, including gasoline, to a hydrogen-rich product gas. Tested in a micro-reactor with gasoline and oxygen at 760/spl deg/C, these catalysts yielded a product gas containing over 60% hydrogen.