L. Kull, D. Luu, P. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, A. Cevrero, I. Oezkaya, Hazar Yueksel, T. Toifl
{"title":"CMOS ADCs Towards 100 GS/s and Beyond","authors":"L. Kull, D. Luu, P. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, A. Cevrero, I. Oezkaya, Hazar Yueksel, T. Toifl","doi":"10.1109/CSICS.2016.7751033","DOIUrl":null,"url":null,"abstract":"The implementation of a 64x time-interleaved ADC in 32nm CMOS SOI is analyzed. Measurement results confirm 33 dB SNDR up to 19.9 GHz at 90 GS/s and 1.2V supply. Architecture details and analysis show insights into limitations and potentials of the chosen architecture. In par-ticular the input bandwidth is of concern for ADCs at more than 64 GS/s, as a larger number of sampling switches in-creases the parasitic load and reduces the input bandwidth. Insights on a simplified analysis of interleaver structures and existing solutions to bandwidth issues are highlighted and show a path to extend the sampling speed of CMOS ADCs beyond 100 GS/s.","PeriodicalId":183218,"journal":{"name":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2016.7751033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The implementation of a 64x time-interleaved ADC in 32nm CMOS SOI is analyzed. Measurement results confirm 33 dB SNDR up to 19.9 GHz at 90 GS/s and 1.2V supply. Architecture details and analysis show insights into limitations and potentials of the chosen architecture. In par-ticular the input bandwidth is of concern for ADCs at more than 64 GS/s, as a larger number of sampling switches in-creases the parasitic load and reduces the input bandwidth. Insights on a simplified analysis of interleaver structures and existing solutions to bandwidth issues are highlighted and show a path to extend the sampling speed of CMOS ADCs beyond 100 GS/s.