Two-dimensional materials for electronic, photonic, spintronic and sensing applications

S. Koester
{"title":"Two-dimensional materials for electronic, photonic, spintronic and sensing applications","authors":"S. Koester","doi":"10.1109/DRC.2016.7548471","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) materials are a broad family of layered crystals characterized by strong intra-layer bonds, but with weak inter-layer coupling dominated by van der Waals forces. These characteristics allow 2D materials to be either exfoliated or grown with atom-scale thickness. A wide range of 2D materials exist [1], including graphene, transition metal dichalcogenides (TMDs), black phosphorus (BP) and many others. While these materials have generated a great deal of excitement in the scientific community, many of the applications where these materials can truly provide a benefit compared to state-of-the-art solutions remain unclear. Here, I will describe our work on 2D materials, and will specifically describe how we have attempted to identify applications for which these materials are best suited.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"555 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Two-dimensional (2D) materials are a broad family of layered crystals characterized by strong intra-layer bonds, but with weak inter-layer coupling dominated by van der Waals forces. These characteristics allow 2D materials to be either exfoliated or grown with atom-scale thickness. A wide range of 2D materials exist [1], including graphene, transition metal dichalcogenides (TMDs), black phosphorus (BP) and many others. While these materials have generated a great deal of excitement in the scientific community, many of the applications where these materials can truly provide a benefit compared to state-of-the-art solutions remain unclear. Here, I will describe our work on 2D materials, and will specifically describe how we have attempted to identify applications for which these materials are best suited.
用于电子、光子、自旋电子和传感应用的二维材料
二维(2D)材料是一种广泛的层状晶体,其特征是层内键强,但层间耦合弱,主要受范德华力的影响。这些特性允许二维材料要么剥离,要么生长成原子级厚度。二维材料种类繁多[1],包括石墨烯、过渡金属二硫族化合物(TMDs)、黑磷(BP)等。虽然这些材料在科学界引起了极大的兴奋,但与最先进的解决方案相比,这些材料真正能带来好处的许多应用仍不清楚。在这里,我将描述我们在二维材料上的工作,并将具体描述我们如何尝试确定这些材料最适合的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信