Femtosecond laser micromachining for the realization of fully integrated photonic and microfluidic devices

S. Eaton, R. Osellame, R. Ramponi
{"title":"Femtosecond laser micromachining for the realization of fully integrated photonic and microfluidic devices","authors":"S. Eaton, R. Osellame, R. Ramponi","doi":"10.1117/12.2076983","DOIUrl":null,"url":null,"abstract":"Femtosecond laser microprocessing is a direct, maskless fabrication technique that has attracted much attention in the past 10 years due to its unprecedented versatility in the 3D patterning of transparent materials. Two common modalities of femtosecond laser microfabrication include buried optical waveguide writing and surface laser ablation, which have been applied to a wide range of transparent substrates including glasses, polymers and crystals. In two photon polymerization, a third modality of femtosecond laser fabrication, focused femtosecond laser pulses drive photopolymerization in photoresists, enabling the writing of complex 3D structures with submicrometer resolution. In this paper, we discuss several microdevices realized by these diverse modalities of femtosecond laser microfabrication, for applications in microfluidics, sensing and quantum information.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Optoelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2076983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Femtosecond laser microprocessing is a direct, maskless fabrication technique that has attracted much attention in the past 10 years due to its unprecedented versatility in the 3D patterning of transparent materials. Two common modalities of femtosecond laser microfabrication include buried optical waveguide writing and surface laser ablation, which have been applied to a wide range of transparent substrates including glasses, polymers and crystals. In two photon polymerization, a third modality of femtosecond laser fabrication, focused femtosecond laser pulses drive photopolymerization in photoresists, enabling the writing of complex 3D structures with submicrometer resolution. In this paper, we discuss several microdevices realized by these diverse modalities of femtosecond laser microfabrication, for applications in microfluidics, sensing and quantum information.
飞秒激光微加工用于实现光子和微流体器件的完全集成
飞秒激光微加工是一种直接的无掩模制造技术,在过去的10年里,由于其在透明材料的3D图案上前所未有的多功能性,引起了人们的广泛关注。飞秒激光微加工的两种常见方式包括埋式光波导写入和表面激光烧蚀,它们已广泛应用于玻璃、聚合物和晶体等透明基板。双光子聚合是飞秒激光制造的第三种方式,聚焦飞秒激光脉冲驱动光刻胶中的光聚合,从而实现亚微米分辨率的复杂3D结构的书写。本文讨论了飞秒激光微加工技术在微流体、传感和量子信息等领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信