Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?

Chew Lian Chua, Sandy Suardi, S. Tsiaplias
{"title":"Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?","authors":"Chew Lian Chua, Sandy Suardi, S. Tsiaplias","doi":"10.2139/ssrn.1792982","DOIUrl":null,"url":null,"abstract":"This paper examines the forecasting qualities of Bayesian Model Averaging (BMA) over a set of single factor models of short-term interest rates. Using weekly and high frequency data for the one-month Eurodollar rate, BMA produces predictive likelihoods that are considerably better than the majority of the short-rate models, but marginally worse off than the best model in each dataset. We observe preference for models incorporating volatility clustering for weekly data and simpler short rate models for high frequency data. This is contrary to the popular belief that a diffusion process with volatility clustering best characterizes the short rate.","PeriodicalId":331095,"journal":{"name":"Melbourne Institute: Applied Economic & Social Research Working Paper Series","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melbourne Institute: Applied Economic & Social Research Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1792982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper examines the forecasting qualities of Bayesian Model Averaging (BMA) over a set of single factor models of short-term interest rates. Using weekly and high frequency data for the one-month Eurodollar rate, BMA produces predictive likelihoods that are considerably better than the majority of the short-rate models, but marginally worse off than the best model in each dataset. We observe preference for models incorporating volatility clustering for weekly data and simpler short rate models for high frequency data. This is contrary to the popular belief that a diffusion process with volatility clustering best characterizes the short rate.
预测短期利率:贝叶斯平均模型提供预测改进吗?
本文研究了贝叶斯平均模型(BMA)对短期利率单因素模型的预测质量。使用一个月欧元美元汇率的每周和高频数据,BMA产生的预测可能性比大多数短期利率模型要好得多,但比每个数据集中的最佳模型略差。我们观察到对每周数据的波动性聚类模型和高频数据的更简单的短期利率模型的偏好。这与普遍认为具有波动性聚类的扩散过程最能表征短期利率的观点相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信