Cancer classification from gene expression based microarray data using SVM ensemble

Shemim Begum, Debasis Chakraborty, R. Sarkar
{"title":"Cancer classification from gene expression based microarray data using SVM ensemble","authors":"Shemim Begum, Debasis Chakraborty, R. Sarkar","doi":"10.1109/CATCON.2015.7449500","DOIUrl":null,"url":null,"abstract":"Ensemble classification, which is the combination of result of a set of base learner has achieved much priority in machine learning theory. It has explored enough prospective in improving the empirical performance. There are very little bit research in Support Vector Machines (SVMs) ensemble in contrast to Neural Network or Decision Tree ensemble. To bridge this gap we analyse and compare SVM ensemble (ADASVM) with K-Nearest Neighbour (KNN) and SVM classifiers. Leukemia dataset is used as benchmark to evaluate and compare the performances of ADASVM with KNN and SVM classifiers.","PeriodicalId":385907,"journal":{"name":"2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATCON.2015.7449500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Ensemble classification, which is the combination of result of a set of base learner has achieved much priority in machine learning theory. It has explored enough prospective in improving the empirical performance. There are very little bit research in Support Vector Machines (SVMs) ensemble in contrast to Neural Network or Decision Tree ensemble. To bridge this gap we analyse and compare SVM ensemble (ADASVM) with K-Nearest Neighbour (KNN) and SVM classifiers. Leukemia dataset is used as benchmark to evaluate and compare the performances of ADASVM with KNN and SVM classifiers.
基于支持向量机集成的基因表达微阵列数据的癌症分类
集成分类是一组基本学习器结果的组合,在机器学习理论中占有重要地位。在提高实证绩效方面有足够的探索前景。与神经网络或决策树集成相比,支持向量机集成的研究很少。为了弥补这一差距,我们分析和比较了支持向量机集成(ADASVM)与k近邻(KNN)和支持向量机分类器。以白血病数据集为基准,对ADASVM与KNN和SVM分类器的性能进行了评价和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信