Calibration of 2D Ultrasound in 3D space for Robotic biopsies

Awais Ahmad, M. C. Cavusoglu, O. Bebek
{"title":"Calibration of 2D Ultrasound in 3D space for Robotic biopsies","authors":"Awais Ahmad, M. C. Cavusoglu, O. Bebek","doi":"10.1109/ICAR.2015.7251431","DOIUrl":null,"url":null,"abstract":"Freehand Ultrasound technique is widely used in intraoperative biopsy procedures for detecting the volumes of interest. Freehand ultrasound probe is faster and flexible with 6 degrees of freedom. Thats why the imaging system must be calibrated in 3D space before integrating it with Robotics Biopsy System. In this paper we present a 3D space calibration method using a multipoint cross-wire phantom. The Ultrasound probe is attached to a robotic manipulator arm which moves it over the phantom in precise steps of distances and angles. The position and orientation of the probe is tracked by an optical tracking system. Optical markers are placed on the probe, phantom tank and the validation needle. The optical tracking system returns the position and orientation of the reference frames attached to these optical markers. The location of threads with reference to the frame of Ultrasound probe is found using this information. These values and the values returned by a mathematical model of the calibration box are used to construct the calibration matrix. The whole system is automated so it can process high number of frames which makes it rapid and more accurate. This process is used to calibrate the space for an automated needle insertion biopsy robot. The accuracy of the system was checked by a validation needle in 3D space. RMS error of the experiment groups on average was 1.67mm.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Freehand Ultrasound technique is widely used in intraoperative biopsy procedures for detecting the volumes of interest. Freehand ultrasound probe is faster and flexible with 6 degrees of freedom. Thats why the imaging system must be calibrated in 3D space before integrating it with Robotics Biopsy System. In this paper we present a 3D space calibration method using a multipoint cross-wire phantom. The Ultrasound probe is attached to a robotic manipulator arm which moves it over the phantom in precise steps of distances and angles. The position and orientation of the probe is tracked by an optical tracking system. Optical markers are placed on the probe, phantom tank and the validation needle. The optical tracking system returns the position and orientation of the reference frames attached to these optical markers. The location of threads with reference to the frame of Ultrasound probe is found using this information. These values and the values returned by a mathematical model of the calibration box are used to construct the calibration matrix. The whole system is automated so it can process high number of frames which makes it rapid and more accurate. This process is used to calibrate the space for an automated needle insertion biopsy robot. The accuracy of the system was checked by a validation needle in 3D space. RMS error of the experiment groups on average was 1.67mm.
机器人活组织检查在三维空间中的二维超声校准
徒手超声技术广泛用于术中活检过程中检测感兴趣的体积。徒手超声探头速度更快,灵活,具有6个自由度。这就是为什么成像系统在与机器人活检系统集成之前必须在3D空间中进行校准的原因。本文提出了一种基于多点交叉线体的三维空间标定方法。超声波探头被安装在一个机械臂上,它可以按照距离和角度的精确步骤在幻影上移动。探头的位置和方向由光学跟踪系统跟踪。光学标记放置在探针、幻影罐和验证针上。光学跟踪系统返回附着在这些光学标记上的参考系的位置和方向。利用这些信息找到与超声探头框架相关的螺纹位置。这些值和由校准盒的数学模型返回的值用于构造校准矩阵。整个系统是自动化的,因此它可以处理大量的帧,使其快速和更准确。该过程用于校准自动针头穿刺活检机器人的空间。在三维空间中用验证针对系统的精度进行了验证。各试验组平均均方根误差为1.67mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信