Wemerson Marinho, E. W. Clua, Luis Martí, Karla Marinho
{"title":"Predicting Item Response Theory Parameters Using Question Statements Texts","authors":"Wemerson Marinho, E. W. Clua, Luis Martí, Karla Marinho","doi":"10.1145/3576050.3576139","DOIUrl":null,"url":null,"abstract":"Recently, new Neural Language Models pre-trained on a massive corpus of texts are available. These models encode statistical features of the languages through their parameters, creating better word vector representations that allow the training of neural networks with smaller sample sets. In this context, we investigate the application of these models to predict Item Response Theory parameters in multiple choice questions. More specifically, we apply our models for the Brazilian National High School Exam (ENEM) questions using the text of their statements and propose a novel optimization target for regression: Item Characteristic Curve. The architecture employed could predict the difficulty parameter b of the ENEM 2020 and 2021 items with a mean absolute error of 70 points. Calculating the IRT score in each knowledge area of the exam for a sample of 100,000 students, we obtained a mean absolute below 40 points for all knowledge areas. Considering only the top quartile, the exam’s main target of interest, the average error was less than 30 points for all areas, being the majority lower than 15 points. Such performance allows predicting parameters on newly created questions, composing mock tests for student training, and analyzing their performance with excellent precision, dispensing with the need for costly item calibration pre-test step.","PeriodicalId":394433,"journal":{"name":"LAK23: 13th International Learning Analytics and Knowledge Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK23: 13th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3576050.3576139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, new Neural Language Models pre-trained on a massive corpus of texts are available. These models encode statistical features of the languages through their parameters, creating better word vector representations that allow the training of neural networks with smaller sample sets. In this context, we investigate the application of these models to predict Item Response Theory parameters in multiple choice questions. More specifically, we apply our models for the Brazilian National High School Exam (ENEM) questions using the text of their statements and propose a novel optimization target for regression: Item Characteristic Curve. The architecture employed could predict the difficulty parameter b of the ENEM 2020 and 2021 items with a mean absolute error of 70 points. Calculating the IRT score in each knowledge area of the exam for a sample of 100,000 students, we obtained a mean absolute below 40 points for all knowledge areas. Considering only the top quartile, the exam’s main target of interest, the average error was less than 30 points for all areas, being the majority lower than 15 points. Such performance allows predicting parameters on newly created questions, composing mock tests for student training, and analyzing their performance with excellent precision, dispensing with the need for costly item calibration pre-test step.