ZHW: A Numerical CODEC for Big Data Scientific Computation

Michael Barrow, Zhuanhao Wu, Scott Lloyd, M. Gokhale, Hiren D. Patel, P. Lindstrom
{"title":"ZHW: A Numerical CODEC for Big Data Scientific Computation","authors":"Michael Barrow, Zhuanhao Wu, Scott Lloyd, M. Gokhale, Hiren D. Patel, P. Lindstrom","doi":"10.1109/ICFPT56656.2022.9974258","DOIUrl":null,"url":null,"abstract":"Distributed big data in scientific computing presents a major I/O performance bottleneck when exploiting data paral-lelism. Consumer and producer compute nodes are often throttled by saturated data channels when processing large numerical data. We describe ZHW, a hardware implementation of the ZFP numerical CODEC that can greatly reduce I/O pressure caused by large scientific datasets. Our ZHW design overcomes barriers that have prevented prior ZFP-like hardware accelerators from obtaining maximum compression in their implementations. The SystemC ZHW hardware library is available in an open source public repository. We demonstrate the practicality of ZHW by synthesizing our CODEC on an Ultrascale+ FPGA and analyzing performance.","PeriodicalId":239314,"journal":{"name":"2022 International Conference on Field-Programmable Technology (ICFPT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT56656.2022.9974258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Distributed big data in scientific computing presents a major I/O performance bottleneck when exploiting data paral-lelism. Consumer and producer compute nodes are often throttled by saturated data channels when processing large numerical data. We describe ZHW, a hardware implementation of the ZFP numerical CODEC that can greatly reduce I/O pressure caused by large scientific datasets. Our ZHW design overcomes barriers that have prevented prior ZFP-like hardware accelerators from obtaining maximum compression in their implementations. The SystemC ZHW hardware library is available in an open source public repository. We demonstrate the practicality of ZHW by synthesizing our CODEC on an Ultrascale+ FPGA and analyzing performance.
面向大数据科学计算的数字编解码器
科学计算中的分布式大数据在利用数据并行性时存在一个主要的I/O性能瓶颈。在处理大型数值数据时,消费者和生产者计算节点经常受到饱和数据通道的限制。我们描述了ZFP数字编解码器的硬件实现ZHW,它可以大大减少大型科学数据集造成的I/O压力。我们的ZHW设计克服了阻碍先前类似zfp的硬件加速器在实现中获得最大压缩的障碍。SystemC ZHW硬件库可以在一个开源的公共存储库中获得。通过在Ultrascale+ FPGA上合成编解码器并分析性能,证明了ZHW的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信