From VFX project management to predictive forecasting

Hannes Ricklefs, Stefan Puschendorf, S. Bhamidipati, Brian Eriksson, Akshay Pushparaja
{"title":"From VFX project management to predictive forecasting","authors":"Hannes Ricklefs, Stefan Puschendorf, S. Bhamidipati, Brian Eriksson, Akshay Pushparaja","doi":"10.1145/3084363.3085036","DOIUrl":null,"url":null,"abstract":"VFX production companies are currently challenged by the increasing complexity of visual effects shots combined with constant schedule demands. The ability to execute in an efficient and cost-effective manner requires extensive coordination between different sites, different departments, and different artists. This coordination demands data-intensive analysis of VFX workflows beyond standard project management practices and existing tools. In this paper, we propose a novel solution centered around a general evaluation data model and APIs that convert production data (job/scene/shot/schedule/task) to business intelligence insights enabling performance analytics and generation of data summarization for process controlling. These analytics provide an impact measuring framework for analyzing performance over time, with the introduction of new production technologies, and across separate jobs. Finally, we show how the historical production data can be used to create predictive analytics for the accurate forecasting of future VFX production process performance.","PeriodicalId":163368,"journal":{"name":"ACM SIGGRAPH 2017 Talks","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2017 Talks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3084363.3085036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

VFX production companies are currently challenged by the increasing complexity of visual effects shots combined with constant schedule demands. The ability to execute in an efficient and cost-effective manner requires extensive coordination between different sites, different departments, and different artists. This coordination demands data-intensive analysis of VFX workflows beyond standard project management practices and existing tools. In this paper, we propose a novel solution centered around a general evaluation data model and APIs that convert production data (job/scene/shot/schedule/task) to business intelligence insights enabling performance analytics and generation of data summarization for process controlling. These analytics provide an impact measuring framework for analyzing performance over time, with the introduction of new production technologies, and across separate jobs. Finally, we show how the historical production data can be used to create predictive analytics for the accurate forecasting of future VFX production process performance.
从视觉特效项目管理到预测预测
视觉特效制作公司目前面临着越来越复杂的视觉效果镜头和不断变化的时间表要求的挑战。以高效和经济的方式执行的能力需要在不同的地点、不同的部门和不同的艺术家之间进行广泛的协调。这种协调需要超越标准项目管理实践和现有工具的视觉特效工作流的数据密集型分析。在本文中,我们提出了一种以通用评估数据模型和api为中心的新颖解决方案,该模型和api可将生产数据(作业/场景/镜头/计划/任务)转换为商业智能洞察,从而实现性能分析和生成用于过程控制的数据摘要。这些分析提供了一个影响测量框架,用于分析随着时间推移、新生产技术的引入以及不同作业的性能。最后,我们展示了如何使用历史生产数据来创建预测分析,以准确预测未来视觉特效生产过程的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信