ow Resource Domain Subjective Context Feature Extraction via Thematic Meta-learning

Vishesh Agarwal, Anil Goplani, Mohit Kumar Barai, Arindam Sarkar, Subhasis Sanyal
{"title":"ow Resource Domain Subjective Context Feature Extraction via Thematic Meta-learning","authors":"Vishesh Agarwal, Anil Goplani, Mohit Kumar Barai, Arindam Sarkar, Subhasis Sanyal","doi":"10.22161/eec.84.1","DOIUrl":null,"url":null,"abstract":"The volume of the data is directly proportional to the model's accuracy in data analytics for any particular domain. Once a developing field or discipline becomes apparent, the scarcity of the data volume becomes a challenging proponent for the correctness of a model and prediction. In the proposed state-of-the-art, a transitive empirical method has been used within the same contextual domain to extract features from a low-resource part via a heterogeneous field with factual data. Even though an example of text processing has been used for brevity, it is not limited. The success rate of the proposed model is 78.37%, considering model performance. But when considering human subject matter experts, the accuracy is 81.2%.","PeriodicalId":382809,"journal":{"name":"International Journal of Electrical, Electronics and Computers","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical, Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22161/eec.84.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The volume of the data is directly proportional to the model's accuracy in data analytics for any particular domain. Once a developing field or discipline becomes apparent, the scarcity of the data volume becomes a challenging proponent for the correctness of a model and prediction. In the proposed state-of-the-art, a transitive empirical method has been used within the same contextual domain to extract features from a low-resource part via a heterogeneous field with factual data. Even though an example of text processing has been used for brevity, it is not limited. The success rate of the proposed model is 78.37%, considering model performance. But when considering human subject matter experts, the accuracy is 81.2%.
基于主题元学习的资源领域主观语境特征提取
数据量与模型在任何特定领域的数据分析精度成正比。一旦一个发展中的领域或学科变得明显,数据量的稀缺性就成为模型和预测正确性的一个具有挑战性的支持者。在提出的最新技术中,在相同的上下文域中使用传递经验方法,通过具有事实数据的异构场从低资源部分提取特征。尽管为了简洁起见使用了一个文本处理示例,但它并不局限于此。考虑到模型性能,所提模型的成功率为78.37%。但当考虑到人类主题专家时,准确率为81.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信