R. Valentim, I. Drago, M. Mellia, Federico Cerutti
{"title":"Lost in Translation: AI-based Generator of Cross-Language Sound-squatting","authors":"R. Valentim, I. Drago, M. Mellia, Federico Cerutti","doi":"10.1109/EuroSPW59978.2023.00063","DOIUrl":null,"url":null,"abstract":"Sound-squatting is a phishing attack that tricks users into accessing malicious resources by exploiting similarities in the pronunciation of words. It is an understudied threat that gains traction with the popularity of smart-speakers and the resurgence of content consumption exclusively via audio, such as podcasts. Defending against sound-squatting is complex, and existing solutions rely on manually curated lists of homophones, which limits the search to a few (and mostly existing) words only. We introduce Sound-squatter, a multi-language AI-based system that generates sound-squatting candidates for proactive defense that covers over 80% of exact homophones and further generating thousands of high-quality approximated homophones. Sound-squatter relies on a state-of-art Transformer Network to learn transliteration. We search for Sound-squatter generated cross-language sound-squatting domains over hundreds of millions of emitted TLS certificates comparing with other types of squatting candidates. Our finding reveals that around 6% of generated sound-squatting candidates have emitted TLS certificates, compared to 8% of other types of squatting candidates. We believe Sound-squatter uncovers the usage of multilingual sound-squatting phenomenon on the Internet and it is a crucial asset for proactive protection against sound-squatting.","PeriodicalId":220415,"journal":{"name":"2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuroSPW59978.2023.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sound-squatting is a phishing attack that tricks users into accessing malicious resources by exploiting similarities in the pronunciation of words. It is an understudied threat that gains traction with the popularity of smart-speakers and the resurgence of content consumption exclusively via audio, such as podcasts. Defending against sound-squatting is complex, and existing solutions rely on manually curated lists of homophones, which limits the search to a few (and mostly existing) words only. We introduce Sound-squatter, a multi-language AI-based system that generates sound-squatting candidates for proactive defense that covers over 80% of exact homophones and further generating thousands of high-quality approximated homophones. Sound-squatter relies on a state-of-art Transformer Network to learn transliteration. We search for Sound-squatter generated cross-language sound-squatting domains over hundreds of millions of emitted TLS certificates comparing with other types of squatting candidates. Our finding reveals that around 6% of generated sound-squatting candidates have emitted TLS certificates, compared to 8% of other types of squatting candidates. We believe Sound-squatter uncovers the usage of multilingual sound-squatting phenomenon on the Internet and it is a crucial asset for proactive protection against sound-squatting.