{"title":"Предельное распределение длины крюка случайно выбранной ячейки в случайной диаграмме Юнга","authors":"Л Р Мутафчиев, Ljuben R Mutafchiev","doi":"10.4213/tm4203","DOIUrl":null,"url":null,"abstract":"Пусть $p(n)$ - количество всех целочисленных разбиений положительного целого числа $n$, и пусть $\\lambda $ - разбиение, выбранное случайно и равновероятно из всех таких $p(n)$ разбиений. Известно, что каждое разбиение $\\lambda $ имеет единственное графическое представление, состоящее из $n$ неперекрывающихся ячеек на плоскости, называемое диаграммой Юнга. В качестве второго шага нашего выборочного эксперимента мы выбираем из $n$ ячеек диаграммы Юнга разбиения $\\lambda $ случайно и равновероятно ячейку $c$. Для больших значений $n$ мы изучаем асимптотическое поведение длины крюка $Z_n=Z_n(\\lambda ,c)$ ячейки $c$ случайного разбиения $\\lambda $. Эта двухэтапная выборочная процедура порождает вероятностную меру, которая приписывает вероятность $1/np(n)$ каждой паре $(\\lambda ,c)$. Показано, что относительно этой вероятностной меры случайная величина $\\pi Z_n/\\sqrt {6n}$ слабо сходится при $n\\to \\infty $ к случайной величине, плотность функции распределения которой равна $6y/(\\pi ^2(e^y-1))$, если $0<y<\\infty $, и нулю в остальных случаях. Доказательство основано на подходе Хеймана к исследованию седловой точки для допустимых степенных рядов.","PeriodicalId":134662,"journal":{"name":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tm4203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Пусть $p(n)$ - количество всех целочисленных разбиений положительного целого числа $n$, и пусть $\lambda $ - разбиение, выбранное случайно и равновероятно из всех таких $p(n)$ разбиений. Известно, что каждое разбиение $\lambda $ имеет единственное графическое представление, состоящее из $n$ неперекрывающихся ячеек на плоскости, называемое диаграммой Юнга. В качестве второго шага нашего выборочного эксперимента мы выбираем из $n$ ячеек диаграммы Юнга разбиения $\lambda $ случайно и равновероятно ячейку $c$. Для больших значений $n$ мы изучаем асимптотическое поведение длины крюка $Z_n=Z_n(\lambda ,c)$ ячейки $c$ случайного разбиения $\lambda $. Эта двухэтапная выборочная процедура порождает вероятностную меру, которая приписывает вероятность $1/np(n)$ каждой паре $(\lambda ,c)$. Показано, что относительно этой вероятностной меры случайная величина $\pi Z_n/\sqrt {6n}$ слабо сходится при $n\to \infty $ к случайной величине, плотность функции распределения которой равна $6y/(\pi ^2(e^y-1))$, если $0