Best Strategy: Lower Risk & Higher Return

Jingyi Shi
{"title":"Best Strategy: Lower Risk & Higher Return","authors":"Jingyi Shi","doi":"10.54691/bcpbm.v46i.5082","DOIUrl":null,"url":null,"abstract":"People have an innate desire for money. Gold and bitcoin, these two high-return investments are popular in the world. We built XGBoost-based regression prediction model and mean-absolute deviation model based on the mean-variance model. We use machine learning and construct an XGBoost regression model for prediction [1]. With the forecast data from above model, we build a mean-absolute deviation model using the final assets as the objective function to maximize the goal.","PeriodicalId":425663,"journal":{"name":"BCP Business & Management","volume":"457 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BCP Business & Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54691/bcpbm.v46i.5082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

People have an innate desire for money. Gold and bitcoin, these two high-return investments are popular in the world. We built XGBoost-based regression prediction model and mean-absolute deviation model based on the mean-variance model. We use machine learning and construct an XGBoost regression model for prediction [1]. With the forecast data from above model, we build a mean-absolute deviation model using the final assets as the objective function to maximize the goal.
最佳策略:低风险高回报
人们对金钱有一种天生的欲望。黄金和比特币这两种高回报投资风靡全球。在均值-方差模型的基础上,建立了基于xgboost的回归预测模型和均值-绝对偏差模型。我们使用机器学习,构建了一个XGBoost回归模型进行预测[1]。利用上述模型的预测数据,我们建立了以最终资产为目标函数,实现目标最大化的均值-绝对偏差模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信