Thermal shock problem of piezoelectric materials with temperature-dependent properties

Ting Sun, Xiao-geng Tian, Li Chen, Ya-peng Shen
{"title":"Thermal shock problem of piezoelectric materials with temperature-dependent properties","authors":"Ting Sun, Xiao-geng Tian, Li Chen, Ya-peng Shen","doi":"10.1109/SPAWDA.2008.4775740","DOIUrl":null,"url":null,"abstract":"Base on the generalized thermoelastic theories of Lord and Shulman (L-S) and Green and Lindsay (G-L), the thermal shock problem of an infinite piezoelectric plate with temperature-dependent properties are studied by using the finite element method (FEM). The governing equations are nonlinear of temperature due to temperature-dependent properties. It is difficult to solve the problem by using the integral transform method. The FEM equations are solved directly in time domain. The distributions of temperature, displacement, stress and electric field are obtained. In the results, it is easy to find that the properties have jumps at the heat wave under the L-S and G-L theories but change continuously under the classical theory. The temperature-dependent properties make the other parameters different from temperature-independent condition. From the results obtained in the paper, one can get that the time-domain solution method of FEM can describe the finite velocity of heat conduction accurately.","PeriodicalId":190941,"journal":{"name":"2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA.2008.4775740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Base on the generalized thermoelastic theories of Lord and Shulman (L-S) and Green and Lindsay (G-L), the thermal shock problem of an infinite piezoelectric plate with temperature-dependent properties are studied by using the finite element method (FEM). The governing equations are nonlinear of temperature due to temperature-dependent properties. It is difficult to solve the problem by using the integral transform method. The FEM equations are solved directly in time domain. The distributions of temperature, displacement, stress and electric field are obtained. In the results, it is easy to find that the properties have jumps at the heat wave under the L-S and G-L theories but change continuously under the classical theory. The temperature-dependent properties make the other parameters different from temperature-independent condition. From the results obtained in the paper, one can get that the time-domain solution method of FEM can describe the finite velocity of heat conduction accurately.
温度相关压电材料的热冲击问题
基于Lord and Shulman (L-S)和Green and Lindsay (G-L)的广义热弹性理论,采用有限元法研究了具有温度相关特性的无限压电板的热冲击问题。由于温度相关的性质,控制方程是非线性的。用积分变换的方法求解这个问题比较困难。在时域内直接求解有限元方程。得到了温度、位移、应力和电场的分布。从结果中不难发现,在L-S和G-L理论下,这些性质在热浪处有跳跃,而在经典理论下,这些性质是连续变化的。与温度相关的特性使得其他参数不同于与温度无关的条件。从本文的计算结果可以看出,有限元法的时域解法可以准确地描述热传导的有限速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信