Optimal design of electric machines by using genetic algorithms: mathematical apparatus to determine machine parameters

F. Ismagilov, V. Vavilov, V. Ayguzina, N. L'vov, Timofey A. L'vovskiy
{"title":"Optimal design of electric machines by using genetic algorithms: mathematical apparatus to determine machine parameters","authors":"F. Ismagilov, V. Vavilov, V. Ayguzina, N. L'vov, Timofey A. L'vovskiy","doi":"10.1109/ICOECS46375.2019.8949884","DOIUrl":null,"url":null,"abstract":"This paper presents a mathematical apparatus that allows calculating the magnetic flux density in the air gap of electrical machines with sufficient accuracy for use in the method of optimal design of electric machines based on genetic algorithms. The mathematical model has been developed in cylindrical coordinates. The novelty and contribution of this work is the solution of the problem of analyzing the magnetic field in an analytical form and in cylindrical coordinates without the use of finite element methods and specialized software packages. The approach described reduces the labor costs in the simulation and estimated time for the engineering design process by using genetic algorithms. The correctness and high accuracy of the developed mathematical model has been confirmed experimentally. The discrepancy between analytical and experimental data is below 5%. The developed mathematical apparatus can be used for the design of new perspective electrical machines by using genetic algorithms.","PeriodicalId":371743,"journal":{"name":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOECS46375.2019.8949884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a mathematical apparatus that allows calculating the magnetic flux density in the air gap of electrical machines with sufficient accuracy for use in the method of optimal design of electric machines based on genetic algorithms. The mathematical model has been developed in cylindrical coordinates. The novelty and contribution of this work is the solution of the problem of analyzing the magnetic field in an analytical form and in cylindrical coordinates without the use of finite element methods and specialized software packages. The approach described reduces the labor costs in the simulation and estimated time for the engineering design process by using genetic algorithms. The correctness and high accuracy of the developed mathematical model has been confirmed experimentally. The discrepancy between analytical and experimental data is below 5%. The developed mathematical apparatus can be used for the design of new perspective electrical machines by using genetic algorithms.
利用遗传算法对电机进行优化设计:确定电机参数的数学装置
本文提出了一种计算电机气隙中磁通密度的数学装置,该装置具有足够的精度,可用于基于遗传算法的电机优化设计方法。数学模型是在柱坐标下建立的。这项工作的新颖和贡献在于解决了在解析形式和柱坐标下分析磁场的问题,而不使用有限元方法和专门的软件包。该方法采用遗传算法,减少了仿真人工成本和工程设计过程的估计时间。实验证明了所建立的数学模型的正确性和较高的精度。分析数据与实验数据的差异小于5%。所开发的数学装置可用于利用遗传算法设计新视角电机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信