Image retrieval of wood species by color, texture, and spatial information

Haipeng Yu, Jun Cao, W. Luo, Yixing Liu
{"title":"Image retrieval of wood species by color, texture, and spatial information","authors":"Haipeng Yu, Jun Cao, W. Luo, Yixing Liu","doi":"10.1109/ICINFA.2009.5205084","DOIUrl":null,"url":null,"abstract":"In this paper, we present an image retrieval method that integrates the color, textural and spatial information of images to facilitate the retrieval effect. Nine parameters are extracted based on the HSV, GLCM, LRE models, and wavelet, fractal algorithms, which include: hue, saturation, value, contrast, angular second moment, sum of variances, long run emphasis, fractal dimension, and wavelet horizontal energy proportion. Then with a maximal similarity measure, the nine parameters are used to retrieve wood species, and the results show that the retrieval effectiveness can be improved by combining these features.","PeriodicalId":223425,"journal":{"name":"2009 International Conference on Information and Automation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2009.5205084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we present an image retrieval method that integrates the color, textural and spatial information of images to facilitate the retrieval effect. Nine parameters are extracted based on the HSV, GLCM, LRE models, and wavelet, fractal algorithms, which include: hue, saturation, value, contrast, angular second moment, sum of variances, long run emphasis, fractal dimension, and wavelet horizontal energy proportion. Then with a maximal similarity measure, the nine parameters are used to retrieve wood species, and the results show that the retrieval effectiveness can be improved by combining these features.
基于颜色、纹理和空间信息的树种图像检索
本文提出了一种融合图像颜色、纹理和空间信息的图像检索方法,以提高检索效果。基于HSV、GLCM、LRE模型和小波、分形算法提取了9个参数,包括:色调、饱和度、值、对比度、角秒矩、方差和、长期重点、分形维数和小波水平能量比。然后结合最大相似度度量,利用这9个参数进行树种检索,结果表明,结合这些特征可以提高检索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信