Developing hierarchical anticipations via neural network-based event segmentation

Christian Gumbsch, M. Adam, B. Elsner, G. Martius, Martin Volker Butz
{"title":"Developing hierarchical anticipations via neural network-based event segmentation","authors":"Christian Gumbsch, M. Adam, B. Elsner, G. Martius, Martin Volker Butz","doi":"10.1109/ICDL53763.2022.9962224","DOIUrl":null,"url":null,"abstract":"Humans can make predictions on various time scales and hierarchical levels. Thereby, the learning of event encodings seems to play a crucial role. In this work we model the development of hierarchical predictions via autonomously learned latent event codes. We present a hierarchical recurrent neural network architecture, whose inductive learning biases foster the development of sparsely changing latent state that compress sensorimotor sequences. A higher level network learns to predict the situations in which the latent states tend to change. Using a simulated robotic manipulator, we demonstrate that the system (i) learns latent states that accurately reflect the event structure of the data, (ii) develops meaningful temporal abstract predictions on the higher level, and (iii) generates goal-anticipatory behavior similar to gaze behavior found in eye-tracking studies with infants. The architecture offers a step towards the autonomous learning of compressed hierarchical encodings of gathered experiences and the exploitation of these encodings to generate adaptive behavior.","PeriodicalId":274171,"journal":{"name":"2022 IEEE International Conference on Development and Learning (ICDL)","volume":"425 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL53763.2022.9962224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Humans can make predictions on various time scales and hierarchical levels. Thereby, the learning of event encodings seems to play a crucial role. In this work we model the development of hierarchical predictions via autonomously learned latent event codes. We present a hierarchical recurrent neural network architecture, whose inductive learning biases foster the development of sparsely changing latent state that compress sensorimotor sequences. A higher level network learns to predict the situations in which the latent states tend to change. Using a simulated robotic manipulator, we demonstrate that the system (i) learns latent states that accurately reflect the event structure of the data, (ii) develops meaningful temporal abstract predictions on the higher level, and (iii) generates goal-anticipatory behavior similar to gaze behavior found in eye-tracking studies with infants. The architecture offers a step towards the autonomous learning of compressed hierarchical encodings of gathered experiences and the exploitation of these encodings to generate adaptive behavior.
通过基于神经网络的事件分割开发分层预期
人类可以在不同的时间尺度和层次上进行预测。因此,事件编码的学习似乎起着至关重要的作用。在这项工作中,我们通过自主学习潜在事件代码对分层预测的发展进行建模。我们提出了一个层次递归神经网络架构,其归纳学习偏差促进稀疏变化的潜在状态的发展,压缩感觉运动序列。更高层次的网络学习预测潜在状态趋于变化的情况。通过模拟机器人操作器,我们证明了该系统(i)学习了准确反映数据事件结构的潜在状态,(ii)在更高层次上发展了有意义的时间抽象预测,以及(iii)产生了类似于在婴儿眼球追踪研究中发现的凝视行为的目标预期行为。该体系结构为自主学习收集经验的压缩分层编码和利用这些编码来生成自适应行为提供了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信