Perception and prediction — A connectionist model

Laxmi R. Iyer, Seng-Beng Ho
{"title":"Perception and prediction — A connectionist model","authors":"Laxmi R. Iyer, Seng-Beng Ho","doi":"10.1109/CIHLI.2013.6613261","DOIUrl":null,"url":null,"abstract":"Generating appropriate responses to incoming stimuli is a fundamental task of an organism. However, in order to generate intelligent responses, it is important to have a deeper understanding of the environment, and make predictions based on this knowledge. Although the ability to make predictions is intrinsic in humans and many animals, it is still a difficult task for a machine with no in built knowledge about the situation. In this paper we present a biologically inspired neural network model that predicts the future trajectory of a moving object after observing its current trajectory.","PeriodicalId":242647,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence for Human-like Intelligence (CIHLI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence for Human-like Intelligence (CIHLI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIHLI.2013.6613261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generating appropriate responses to incoming stimuli is a fundamental task of an organism. However, in order to generate intelligent responses, it is important to have a deeper understanding of the environment, and make predictions based on this knowledge. Although the ability to make predictions is intrinsic in humans and many animals, it is still a difficult task for a machine with no in built knowledge about the situation. In this paper we present a biologically inspired neural network model that predicts the future trajectory of a moving object after observing its current trajectory.
感知与预测——一个联结主义模型
对传入的刺激产生适当的反应是生物体的基本任务。然而,为了产生智能响应,对环境有更深入的了解,并基于这些知识做出预测是很重要的。尽管预测的能力是人类和许多动物与生俱来的,但对于一台没有内在知识的机器来说,这仍然是一项艰巨的任务。在本文中,我们提出了一个受生物学启发的神经网络模型,该模型在观察运动物体的当前轨迹后预测其未来轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信