Sabra El Ferchichi, S. Zidi, K. Laabidi, M. Ksouri, S. Maouche
{"title":"Feature extraction for atmospheric pollution detection","authors":"Sabra El Ferchichi, S. Zidi, K. Laabidi, M. Ksouri, S. Maouche","doi":"10.1109/CCCA.2011.6031491","DOIUrl":null,"url":null,"abstract":"Atmospheric data sets are represented by an amount of heterogeneous and redundant data. As number of measurements grows, a strategy is needed to select and efficiently analyze the useful information from the whole data set. The aim of this work is to propose a feature extraction technique based on construction of clusters of similar features. The main objective of the proposed process is to attempt to reach a more accurate classification task and to achieve a more compact representation of the underlying structure of the data. The paper reports the results obtained using the above extraction and analysis procedure of a real data set on atmospheric pollution. It is shown that the proposed approach is able to detect underlying relationship between features and thus get to ameliorate classification accuracy rate.","PeriodicalId":259067,"journal":{"name":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCA.2011.6031491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Atmospheric data sets are represented by an amount of heterogeneous and redundant data. As number of measurements grows, a strategy is needed to select and efficiently analyze the useful information from the whole data set. The aim of this work is to propose a feature extraction technique based on construction of clusters of similar features. The main objective of the proposed process is to attempt to reach a more accurate classification task and to achieve a more compact representation of the underlying structure of the data. The paper reports the results obtained using the above extraction and analysis procedure of a real data set on atmospheric pollution. It is shown that the proposed approach is able to detect underlying relationship between features and thus get to ameliorate classification accuracy rate.