Feature extraction for atmospheric pollution detection

Sabra El Ferchichi, S. Zidi, K. Laabidi, M. Ksouri, S. Maouche
{"title":"Feature extraction for atmospheric pollution detection","authors":"Sabra El Ferchichi, S. Zidi, K. Laabidi, M. Ksouri, S. Maouche","doi":"10.1109/CCCA.2011.6031491","DOIUrl":null,"url":null,"abstract":"Atmospheric data sets are represented by an amount of heterogeneous and redundant data. As number of measurements grows, a strategy is needed to select and efficiently analyze the useful information from the whole data set. The aim of this work is to propose a feature extraction technique based on construction of clusters of similar features. The main objective of the proposed process is to attempt to reach a more accurate classification task and to achieve a more compact representation of the underlying structure of the data. The paper reports the results obtained using the above extraction and analysis procedure of a real data set on atmospheric pollution. It is shown that the proposed approach is able to detect underlying relationship between features and thus get to ameliorate classification accuracy rate.","PeriodicalId":259067,"journal":{"name":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCA.2011.6031491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Atmospheric data sets are represented by an amount of heterogeneous and redundant data. As number of measurements grows, a strategy is needed to select and efficiently analyze the useful information from the whole data set. The aim of this work is to propose a feature extraction technique based on construction of clusters of similar features. The main objective of the proposed process is to attempt to reach a more accurate classification task and to achieve a more compact representation of the underlying structure of the data. The paper reports the results obtained using the above extraction and analysis procedure of a real data set on atmospheric pollution. It is shown that the proposed approach is able to detect underlying relationship between features and thus get to ameliorate classification accuracy rate.
大气污染检测的特征提取
大气数据集由大量异构和冗余数据表示。随着测量数量的增加,需要一种策略来从整个数据集中选择和有效地分析有用的信息。本文的目的是提出一种基于相似特征聚类构建的特征提取技术。所提出的过程的主要目标是试图达到更准确的分类任务,并实现对数据的底层结构的更紧凑的表示。本文报道了用上述方法对一个实际大气污染数据集进行提取和分析的结果。结果表明,该方法能够检测特征之间的潜在关系,从而提高分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信