M. Gulzar, Muhammad Munawar, Zarak Dewan, Muhammad Salman, S. Iqbal
{"title":"Level Control of Coupled Conical Tank System using Adaptive Model Predictive Controller","authors":"M. Gulzar, Muhammad Munawar, Zarak Dewan, Muhammad Salman, S. Iqbal","doi":"10.1109/HONET50430.2020.9322842","DOIUrl":null,"url":null,"abstract":"The controlling techniques of liquid level in a coupled conical tank system is a challenging task owing to its continuous changing cross-section and non-linearity in the system. In this paper, an adaptive model predictive controller (AMPC) is presented to control the valve speed of conical shaped tank to maintain the liquid level. In AMPC, the plant model states are changed in every cycle along with the MPC controller to update the plant parameters in a precise manner, which is a major concern due to its non-linear behavior. Moreover, the comparative analysis of coupled conical tank system with other controllers like Fractional order PID (FOPID) controller and PID controller is carried out. The simulation results represent the superiority of the AMPC controller as compared to the other controlling methods in terms of response time and overshoot.","PeriodicalId":245321,"journal":{"name":"2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)","volume":"385 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HONET50430.2020.9322842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The controlling techniques of liquid level in a coupled conical tank system is a challenging task owing to its continuous changing cross-section and non-linearity in the system. In this paper, an adaptive model predictive controller (AMPC) is presented to control the valve speed of conical shaped tank to maintain the liquid level. In AMPC, the plant model states are changed in every cycle along with the MPC controller to update the plant parameters in a precise manner, which is a major concern due to its non-linear behavior. Moreover, the comparative analysis of coupled conical tank system with other controllers like Fractional order PID (FOPID) controller and PID controller is carried out. The simulation results represent the superiority of the AMPC controller as compared to the other controlling methods in terms of response time and overshoot.