Level Control of Coupled Conical Tank System using Adaptive Model Predictive Controller

M. Gulzar, Muhammad Munawar, Zarak Dewan, Muhammad Salman, S. Iqbal
{"title":"Level Control of Coupled Conical Tank System using Adaptive Model Predictive Controller","authors":"M. Gulzar, Muhammad Munawar, Zarak Dewan, Muhammad Salman, S. Iqbal","doi":"10.1109/HONET50430.2020.9322842","DOIUrl":null,"url":null,"abstract":"The controlling techniques of liquid level in a coupled conical tank system is a challenging task owing to its continuous changing cross-section and non-linearity in the system. In this paper, an adaptive model predictive controller (AMPC) is presented to control the valve speed of conical shaped tank to maintain the liquid level. In AMPC, the plant model states are changed in every cycle along with the MPC controller to update the plant parameters in a precise manner, which is a major concern due to its non-linear behavior. Moreover, the comparative analysis of coupled conical tank system with other controllers like Fractional order PID (FOPID) controller and PID controller is carried out. The simulation results represent the superiority of the AMPC controller as compared to the other controlling methods in terms of response time and overshoot.","PeriodicalId":245321,"journal":{"name":"2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)","volume":"385 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HONET50430.2020.9322842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The controlling techniques of liquid level in a coupled conical tank system is a challenging task owing to its continuous changing cross-section and non-linearity in the system. In this paper, an adaptive model predictive controller (AMPC) is presented to control the valve speed of conical shaped tank to maintain the liquid level. In AMPC, the plant model states are changed in every cycle along with the MPC controller to update the plant parameters in a precise manner, which is a major concern due to its non-linear behavior. Moreover, the comparative analysis of coupled conical tank system with other controllers like Fractional order PID (FOPID) controller and PID controller is carried out. The simulation results represent the superiority of the AMPC controller as compared to the other controlling methods in terms of response time and overshoot.
基于自适应模型预测控制器的耦合锥形水箱液位控制
耦合锥形罐系统由于其截面的连续变化和系统的非线性,液位控制技术是一项具有挑战性的任务。本文提出了一种自适应模型预测控制器(AMPC),用于控制锥形罐的阀速以保持液位。在AMPC中,随着MPC控制器在每个周期中改变植物模型状态以精确地更新植物参数,这是由于其非线性行为而引起的主要问题。并与分数阶PID (FOPID)控制器和PID控制器等控制器进行了对比分析。仿真结果表明,AMPC控制器在响应时间和超调量方面优于其他控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信