P. Saffari, M. Taherzadeh‐Sani, A. Basaligheh, F. Nabki, M. Sawan
{"title":"Low-energy CMOS common-drain power amplifier for short-range applications","authors":"P. Saffari, M. Taherzadeh‐Sani, A. Basaligheh, F. Nabki, M. Sawan","doi":"10.1109/NEWCAS.2015.7182047","DOIUrl":null,"url":null,"abstract":"In this paper, a power amplifier implemented with a common-drain structure is introduced. With proper input matching, this structure is shown to provide a reasonable power gain and superior linearity and efficiency in comparison to other low-power topologies. This is shown to be due to the low dependency of the power gain to the transistor transconductance and the low-voltage variations across the gate-source capacitance. This power amplifier is suitable for low-power and short-range applications such as Bluetooth Low Energy (BLE). Based on the calculated S-parameters, the operation frequency of this amplifier and its design trade-offs are presented, along with a comparison with competitive topologies. The design is simulated in a 0.13 μm CMOS technology, operates with a 1.2 V supply, and provides a power gain of 8.5 dB with a DC power consumption of 3.6 mW. The input 1-dB compression point is 2.2 dBm, yielding a power added efficiency of 43%.","PeriodicalId":404655,"journal":{"name":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2015.7182047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, a power amplifier implemented with a common-drain structure is introduced. With proper input matching, this structure is shown to provide a reasonable power gain and superior linearity and efficiency in comparison to other low-power topologies. This is shown to be due to the low dependency of the power gain to the transistor transconductance and the low-voltage variations across the gate-source capacitance. This power amplifier is suitable for low-power and short-range applications such as Bluetooth Low Energy (BLE). Based on the calculated S-parameters, the operation frequency of this amplifier and its design trade-offs are presented, along with a comparison with competitive topologies. The design is simulated in a 0.13 μm CMOS technology, operates with a 1.2 V supply, and provides a power gain of 8.5 dB with a DC power consumption of 3.6 mW. The input 1-dB compression point is 2.2 dBm, yielding a power added efficiency of 43%.