Implication, Equivalence, and Negation

Avron Arnon
{"title":"Implication, Equivalence, and Negation","authors":"Avron Arnon","doi":"10.21146/2074-1472-2021-27-1-31-45","DOIUrl":null,"url":null,"abstract":"A system $HCL_{\\overset{\\neg}{\\leftrightarrow}}$ in the language of {$ \\neg, \\leftrightarrow $} is obtained by adding a single negation-less axiom schema to $HLL_{\\overset{\\neg}{\\leftrightarrow}}$ (the standard Hilbert-type system for multiplicative linear logic without propositional constants), and changing $ \\rightarrow $ to $\\leftrightarrow$. $HCL_{\\overset{\\neg}{\\leftrightarrow}}$ is weakly, but not strongly, sound and complete for ${\\bf  CL}_{\\overset{\\neg}{\\leftrightarrow}}$ (the {$ \\neg,\\leftrightarrow$} – fragment of classical logic). By adding the Ex Falso rule to $HCL_{\\overset{\\neg}{\\leftrightarrow}}$ we get a system with is strongly sound and complete for ${\\bf CL}_ {\\overset{\\neg}{\\leftrightarrow}}$ . It is shown that the use of a new rule cannot be replaced by the addition of axiom schemas. A simple semantics for which $HCL_{\\overset{\\neg}{\\leftrightarrow}}$ itself is strongly sound and complete is given. It is also shown that  $L_{HCL}$$_{\\overset{\\neg}{\\leftrightarrow}}$ , the logic induced by $HCL_{\\overset{\\neg}{\\leftrightarrow}}$ , has a single non-trivial proper axiomatic extension, that this extension and ${\\bf  CL}_{\\overset{\\neg}{\\leftrightarrow}}$ are the only proper extensions in the language of { $\\neg$, $\\leftrightarrow$ } of $ {\\bf  L}_{HCL}$$_{\\overset{\\neg}{\\leftrightarrow}}$ , and that $ {\\bf  L}_{HCL}$$_{\\overset{\\neg}{\\leftrightarrow}}$ and its single axiomatic extension are the only logics in {$ \\neg, \\leftrightarrow$ } which have a connective with the relevant deduction property, but are not equivalent $\\neg$ to an axiomatic extension of ${\\bf R}_{\\overset{\\neg}{\\leftrightarrow}}$ (the intensional fragment of the relevant logic ${\\bf R}$). Finally, we discuss the question whether $ {\\bf  L}_{HCL}$$_{\\overset{\\neg}{\\leftrightarrow}}$ can be taken as a paraconsistent logic.","PeriodicalId":155189,"journal":{"name":"Logical Investigations","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Investigations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21146/2074-1472-2021-27-1-31-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A system $HCL_{\overset{\neg}{\leftrightarrow}}$ in the language of {$ \neg, \leftrightarrow $} is obtained by adding a single negation-less axiom schema to $HLL_{\overset{\neg}{\leftrightarrow}}$ (the standard Hilbert-type system for multiplicative linear logic without propositional constants), and changing $ \rightarrow $ to $\leftrightarrow$. $HCL_{\overset{\neg}{\leftrightarrow}}$ is weakly, but not strongly, sound and complete for ${\bf  CL}_{\overset{\neg}{\leftrightarrow}}$ (the {$ \neg,\leftrightarrow$} – fragment of classical logic). By adding the Ex Falso rule to $HCL_{\overset{\neg}{\leftrightarrow}}$ we get a system with is strongly sound and complete for ${\bf CL}_ {\overset{\neg}{\leftrightarrow}}$ . It is shown that the use of a new rule cannot be replaced by the addition of axiom schemas. A simple semantics for which $HCL_{\overset{\neg}{\leftrightarrow}}$ itself is strongly sound and complete is given. It is also shown that  $L_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ , the logic induced by $HCL_{\overset{\neg}{\leftrightarrow}}$ , has a single non-trivial proper axiomatic extension, that this extension and ${\bf  CL}_{\overset{\neg}{\leftrightarrow}}$ are the only proper extensions in the language of { $\neg$, $\leftrightarrow$ } of $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ , and that $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ and its single axiomatic extension are the only logics in {$ \neg, \leftrightarrow$ } which have a connective with the relevant deduction property, but are not equivalent $\neg$ to an axiomatic extension of ${\bf R}_{\overset{\neg}{\leftrightarrow}}$ (the intensional fragment of the relevant logic ${\bf R}$). Finally, we discuss the question whether $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ can be taken as a paraconsistent logic.
暗示、等价和否定
一个系统 $HCL_{\overset{\neg}{\leftrightarrow}}$用…的语言 {$ \neg, \leftrightarrow $} 是通过添加单个无否定公理模式获得的 $HLL_{\overset{\neg}{\leftrightarrow}}$ (没有命题常数的乘法线性逻辑的标准希尔伯特型系统),并且不断变化 $ \rightarrow $ 到 $\leftrightarrow$. $HCL_{\overset{\neg}{\leftrightarrow}}$ 是弱的,而不是强的,健全和完整的吗 ${\bf  CL}_{\overset{\neg}{\leftrightarrow}}$ (二) {$ \neg,\leftrightarrow$} ——经典逻辑的片段)。通过添加Ex - Falso规则 $HCL_{\overset{\neg}{\leftrightarrow}}$ 我们得到了一个系统是强有力的健全和完整的 ${\bf CL}_ {\overset{\neg}{\leftrightarrow}}$ . 结果表明,新规则的使用不能被公理模式的添加所取代。一个简单的语义 $HCL_{\overset{\neg}{\leftrightarrow}}$ 它本身是非常健全和完整的。还表明$L_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ ,逻辑由 $HCL_{\overset{\neg}{\leftrightarrow}}$ ,有一个非平凡的固有公理扩展,这个扩展和 ${\bf  CL}_{\overset{\neg}{\leftrightarrow}}$ 语言中唯一合适的扩展是 { $\neg$, $\leftrightarrow$ } 的 $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ ,还有 $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ 它唯一的公理扩展是唯一的逻辑 {$ \neg, \leftrightarrow$ } 哪些与相关的演绎属性有关联,但不等价 $\neg$ 的公理化延伸 ${\bf R}_{\overset{\neg}{\leftrightarrow}}$ (相关逻辑的内涵片段 ${\bf R}$). 最后,我们讨论了是否 $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ 可以看作是一种副一致的逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信