Refining Obstacle Perception Safety Zones via Maneuver-Based Decomposition

Sever Topan, Yuxiao Chen, E. Schmerling, Karen Leung, Jonas Nilsson, Michael Cox, M. Pavone
{"title":"Refining Obstacle Perception Safety Zones via Maneuver-Based Decomposition","authors":"Sever Topan, Yuxiao Chen, E. Schmerling, Karen Leung, Jonas Nilsson, Michael Cox, M. Pavone","doi":"10.1109/IV55152.2023.10186702","DOIUrl":null,"url":null,"abstract":"A critical task for developing safe autonomous driving stacks is to determine whether an obstacle is safety-critical, i.e., poses an imminent threat to the autonomous vehicle. Our previous work showed that Hamilton Jacobi reachability theory can be applied to compute interaction-dynamics-aware perception safety zones that better inform an ego vehicle’s perception module which obstacles are considered safety-critical. For completeness, these zones are typically larger than absolutely necessary, forcing the perception module to pay attention to a larger collection of objects for the sake of conservatism. As an improvement, we propose a maneuver-based decomposition of our safety zones that leverages information about the ego maneuver to reduce the zone volume. In particular, we propose a \"temporal convolution\" operation that produces safety zones for specific ego maneuvers, thus limiting the ego’s behavior to reduce the size of the safety zones. We show with numerical experiments that maneuver-based zones are significantly smaller (up to 76% size reduction) than the baseline while maintaining completeness.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A critical task for developing safe autonomous driving stacks is to determine whether an obstacle is safety-critical, i.e., poses an imminent threat to the autonomous vehicle. Our previous work showed that Hamilton Jacobi reachability theory can be applied to compute interaction-dynamics-aware perception safety zones that better inform an ego vehicle’s perception module which obstacles are considered safety-critical. For completeness, these zones are typically larger than absolutely necessary, forcing the perception module to pay attention to a larger collection of objects for the sake of conservatism. As an improvement, we propose a maneuver-based decomposition of our safety zones that leverages information about the ego maneuver to reduce the zone volume. In particular, we propose a "temporal convolution" operation that produces safety zones for specific ego maneuvers, thus limiting the ego’s behavior to reduce the size of the safety zones. We show with numerical experiments that maneuver-based zones are significantly smaller (up to 76% size reduction) than the baseline while maintaining completeness.
通过基于机动的分解改进障碍物感知安全区域
开发安全的自动驾驶堆栈的一个关键任务是确定障碍物是否对安全至关重要,即是否对自动驾驶汽车构成迫在眉睫的威胁。我们之前的工作表明,Hamilton Jacobi可达性理论可以应用于计算交互动态感知感知安全区域,从而更好地告知自我车辆的感知模块哪些障碍物被认为是安全关键。为了完整性,这些区域通常比绝对必要的要大,这迫使感知模块为了保守起见而关注更大的对象集合。作为改进,我们提出了一种基于机动的安全区分解方法,利用有关自我机动的信息来减少区域体积。特别是,我们提出了一种“时间卷积”操作,该操作为特定的自我操作产生安全区,从而限制自我的行为以减少安全区的大小。我们通过数值实验表明,在保持完整性的同时,基于机动的区域明显小于基线(最多减少76%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信