Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, M. Gelbart, P. Whatmough, Gu-Yeon Wei, D. Brooks
{"title":"A case for efficient accelerator design space exploration via Bayesian optimization","authors":"Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, M. Gelbart, P. Whatmough, Gu-Yeon Wei, D. Brooks","doi":"10.1109/ISLPED.2017.8009208","DOIUrl":null,"url":null,"abstract":"In this paper we propose using machine learning to improve the design of deep neural network hardware accelerators. We show how to adapt multi-objective Bayesian optimization to overcome a challenging design problem: optimizing deep neural network hardware accelerators for both accuracy and energy efficiency. DNN accelerators exhibit all aspects of a challenging optimization space: the landscape is rough, evaluating designs is expensive, the objectives compete with each other, and both design spaces (algorithmic and microarchitectural) are unwieldy. With multi-objective Bayesian optimization, the design space exploration is made tractable and the design points found vastly outperform traditional methods across all metrics of interest.","PeriodicalId":385714,"journal":{"name":"2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2017.8009208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
In this paper we propose using machine learning to improve the design of deep neural network hardware accelerators. We show how to adapt multi-objective Bayesian optimization to overcome a challenging design problem: optimizing deep neural network hardware accelerators for both accuracy and energy efficiency. DNN accelerators exhibit all aspects of a challenging optimization space: the landscape is rough, evaluating designs is expensive, the objectives compete with each other, and both design spaces (algorithmic and microarchitectural) are unwieldy. With multi-objective Bayesian optimization, the design space exploration is made tractable and the design points found vastly outperform traditional methods across all metrics of interest.