A case for efficient accelerator design space exploration via Bayesian optimization

Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, M. Gelbart, P. Whatmough, Gu-Yeon Wei, D. Brooks
{"title":"A case for efficient accelerator design space exploration via Bayesian optimization","authors":"Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, M. Gelbart, P. Whatmough, Gu-Yeon Wei, D. Brooks","doi":"10.1109/ISLPED.2017.8009208","DOIUrl":null,"url":null,"abstract":"In this paper we propose using machine learning to improve the design of deep neural network hardware accelerators. We show how to adapt multi-objective Bayesian optimization to overcome a challenging design problem: optimizing deep neural network hardware accelerators for both accuracy and energy efficiency. DNN accelerators exhibit all aspects of a challenging optimization space: the landscape is rough, evaluating designs is expensive, the objectives compete with each other, and both design spaces (algorithmic and microarchitectural) are unwieldy. With multi-objective Bayesian optimization, the design space exploration is made tractable and the design points found vastly outperform traditional methods across all metrics of interest.","PeriodicalId":385714,"journal":{"name":"2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2017.8009208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

In this paper we propose using machine learning to improve the design of deep neural network hardware accelerators. We show how to adapt multi-objective Bayesian optimization to overcome a challenging design problem: optimizing deep neural network hardware accelerators for both accuracy and energy efficiency. DNN accelerators exhibit all aspects of a challenging optimization space: the landscape is rough, evaluating designs is expensive, the objectives compete with each other, and both design spaces (algorithmic and microarchitectural) are unwieldy. With multi-objective Bayesian optimization, the design space exploration is made tractable and the design points found vastly outperform traditional methods across all metrics of interest.
基于贝叶斯优化的高效加速器空间探索设计实例
本文提出利用机器学习来改进深度神经网络硬件加速器的设计。我们展示了如何适应多目标贝叶斯优化来克服一个具有挑战性的设计问题:优化深度神经网络硬件加速器的精度和能量效率。DNN加速器展示了一个具有挑战性的优化空间的所有方面:景观是粗糙的,评估设计是昂贵的,目标相互竞争,设计空间(算法和微架构)都是笨拙的。使用多目标贝叶斯优化,设计空间探索变得容易处理,并且在所有感兴趣的指标上找到的设计点大大优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信