Combined Convolutional and Perceptron Neural Networks for Handwritten Digits Recognition

Zufar Kayumov, D. Tumakov, S. Mosin
{"title":"Combined Convolutional and Perceptron Neural Networks for Handwritten Digits Recognition","authors":"Zufar Kayumov, D. Tumakov, S. Mosin","doi":"10.1109/DSPA48919.2020.9213301","DOIUrl":null,"url":null,"abstract":"The use of a combination of a convolutional neural network and multilayer perceptrons for recognizing handwritten digits is considered. Recognition is carried out by two sets of networks following each other. The first neural network selects two digits with maximum activation functions. Depending on the winners, the following network is activated (multilayer perceptron), which selects one digit from two. The proposed algorithm is tested on the data from MNIST. The recognition error is 0.75%. Obtained results demonstrate that the minimum error with this approach is 0.68%, and the accuracy of the F-metric is about 0.99 for each digit. The main feature of the proposed solution is dealt with the fact that the proposed cascaded combination of neural networks provides a sufficiently high accuracy with a simple architecture.","PeriodicalId":262164,"journal":{"name":"2020 22th International Conference on Digital Signal Processing and its Applications (DSPA)","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22th International Conference on Digital Signal Processing and its Applications (DSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPA48919.2020.9213301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The use of a combination of a convolutional neural network and multilayer perceptrons for recognizing handwritten digits is considered. Recognition is carried out by two sets of networks following each other. The first neural network selects two digits with maximum activation functions. Depending on the winners, the following network is activated (multilayer perceptron), which selects one digit from two. The proposed algorithm is tested on the data from MNIST. The recognition error is 0.75%. Obtained results demonstrate that the minimum error with this approach is 0.68%, and the accuracy of the F-metric is about 0.99 for each digit. The main feature of the proposed solution is dealt with the fact that the proposed cascaded combination of neural networks provides a sufficiently high accuracy with a simple architecture.
手写体数字识别的组合卷积和感知器神经网络
考虑了使用卷积神经网络和多层感知器的组合来识别手写数字。识别是由两组相互跟踪的网络进行的。第一个神经网络选择两个具有最大激活函数的数字。根据获胜者,下面的网络被激活(多层感知机),它从两个数字中选择一个数字。在MNIST的数据上对该算法进行了测试。识别误差为0.75%。结果表明,该方法的最小误差为0.68%,F-metric的精度约为每位数0.99。该解决方案的主要特点是,所提出的神经网络级联组合以简单的结构提供了足够高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信