Development of a Sign Language E-Tutor using Convolutional Neural Network

O. Adanigbo, Temitayo O. Oyewole
{"title":"Development of a Sign Language E-Tutor using Convolutional Neural Network","authors":"O. Adanigbo, Temitayo O. Oyewole","doi":"10.46792/fuoyejet.v8i2.1055","DOIUrl":null,"url":null,"abstract":"Deaf and hearing-impaired people typically use sign language as their primary form of communication. This study designed a Convolutional Neural Network-based Sign Language e-tutor which removes language barriers between people who are deaf and use sign language and people who can hear and speak. Thus giving deaf people a way to communicate with hearing people in real time, with no need to write notes or use a human sign language interpreter. The method used is comprised of four major phases: data collection, data preprocessing, model training and model evaluation. The Model Precision, Accuracy, Recall and f1 score were 0.977, 0.985, 0.99, and 0.99 respectively.","PeriodicalId":323504,"journal":{"name":"FUOYE Journal of Engineering and Technology","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUOYE Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46792/fuoyejet.v8i2.1055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deaf and hearing-impaired people typically use sign language as their primary form of communication. This study designed a Convolutional Neural Network-based Sign Language e-tutor which removes language barriers between people who are deaf and use sign language and people who can hear and speak. Thus giving deaf people a way to communicate with hearing people in real time, with no need to write notes or use a human sign language interpreter. The method used is comprised of four major phases: data collection, data preprocessing, model training and model evaluation. The Model Precision, Accuracy, Recall and f1 score were 0.977, 0.985, 0.99, and 0.99 respectively.
基于卷积神经网络的手语电子辅导系统的开发
聋人和听力受损的人通常使用手语作为他们的主要交流形式。本研究设计了一种基于卷积神经网络的手语电子导师,消除聋哑人使用手语和正常人之间的语言障碍。这样,聋哑人就可以与正常人实时交流,而不需要写笔记或使用人类手语翻译。该方法包括数据采集、数据预处理、模型训练和模型评价四个主要阶段。模型精密度、准确度、召回率和f1得分分别为0.977、0.985、0.99和0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信