Fine-Tuning IndoBERT Model for Big Five Personality Prediction from Indonesian Social Media

G. Pradnyana, Wiwik Anggraeni, E. M. Yuniarno, M. Purnomo
{"title":"Fine-Tuning IndoBERT Model for Big Five Personality Prediction from Indonesian Social Media","authors":"G. Pradnyana, Wiwik Anggraeni, E. M. Yuniarno, M. Purnomo","doi":"10.1109/ISITIA59021.2023.10221074","DOIUrl":null,"url":null,"abstract":"The increasing amount of data generated from social media brings opportunities to produce various helpful knowledge and information, one of which is predicting a person’s personality. The advent of attention-based classification techniques and transformers brings promising results on multiple tasks in Natural Language Processing (NLP). In this study, we predicted the Big Five personalities from Indonesian-language social media by fine-tuning the IndoBERT model. The IndoBERT model is a Bidirectional Encoder Representation from Transformers (BERT)-based mono-language model trained in the Indonesian corpus. Based on the experimental results, the prediction model we proposed obtained an accuracy value of 72% and an F1-score of 71% using IndoBERT-base. Meanwhile, using IndoBERT-large can increase the accuracy value by 78% and the F1-score by 74%. The proposed model also outperforms previous models in predicting the Big Five personality.","PeriodicalId":116682,"journal":{"name":"2023 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA59021.2023.10221074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing amount of data generated from social media brings opportunities to produce various helpful knowledge and information, one of which is predicting a person’s personality. The advent of attention-based classification techniques and transformers brings promising results on multiple tasks in Natural Language Processing (NLP). In this study, we predicted the Big Five personalities from Indonesian-language social media by fine-tuning the IndoBERT model. The IndoBERT model is a Bidirectional Encoder Representation from Transformers (BERT)-based mono-language model trained in the Indonesian corpus. Based on the experimental results, the prediction model we proposed obtained an accuracy value of 72% and an F1-score of 71% using IndoBERT-base. Meanwhile, using IndoBERT-large can increase the accuracy value by 78% and the F1-score by 74%. The proposed model also outperforms previous models in predicting the Big Five personality.
印尼社交媒体对IndoBERT大五人格预测模型的微调
社交媒体产生的越来越多的数据带来了产生各种有用知识和信息的机会,其中之一就是预测一个人的性格。基于注意力的分类技术和转换器的出现,在自然语言处理(NLP)的多个任务上带来了可喜的结果。在这项研究中,我们通过对IndoBERT模型进行微调,预测了印尼语社交媒体的五大个性。IndoBERT模型是在印尼语语料库中训练的基于变形金刚(BERT)的双向编码器表示的单语言模型。基于实验结果,我们提出的IndoBERT-base预测模型的准确率为72%,F1-score为71%。同时,使用IndoBERT-large可以将准确率值提高78%,f1得分提高74%。该模型在预测五大人格方面也优于之前的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信