High voltage vertical p-n diodes with ion-implanted edge termination and sputtered SiNx passivation on GaN substrates

Jingshan Wang, Lina Cao, Jinqiao Xie, E. Beam, R. McCarthy, C. Youtsey, P. Fay
{"title":"High voltage vertical p-n diodes with ion-implanted edge termination and sputtered SiNx passivation on GaN substrates","authors":"Jingshan Wang, Lina Cao, Jinqiao Xie, E. Beam, R. McCarthy, C. Youtsey, P. Fay","doi":"10.1109/IEDM.2017.8268361","DOIUrl":null,"url":null,"abstract":"High-voltage vertical GaN-on-GaN power diodes with partially compensated ion-implanted edge termination (ET) and sputtered SiNx passivation are reported. The measured devices exhibit a breakdown voltage (Vbr) exceeding 1.2 kV. Optimization of the ion-implantation-based ET has been performed through simulation and experiment, and the impact of SiNx surface passivation on breakdown has also been evaluated. Use of a partially-compensated ET layer, with approximately 40 nm of the p-type anode layer remaining uncompensated by the implant, is optimal for maximizing Vbr. Additionally, sputter-deposited SiNx, rather than the more conventional plasma-enhanced chemical vapor deposition (PECVD)-based SiNx, results in less degradation in the on-state performance while providing the same Vbr. The diodes support current densities of 8 kA/cm2 at a forward voltage 5 V, with differential specific on resistances (Ron) of 0.11 mΩcm2. A Baliga's figure-of merit (BFOM) of 13.5 GW/cm2 is obtained; this is among the highest reported BFOM for GaN homoepitaxial pn diodes.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"468 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

High-voltage vertical GaN-on-GaN power diodes with partially compensated ion-implanted edge termination (ET) and sputtered SiNx passivation are reported. The measured devices exhibit a breakdown voltage (Vbr) exceeding 1.2 kV. Optimization of the ion-implantation-based ET has been performed through simulation and experiment, and the impact of SiNx surface passivation on breakdown has also been evaluated. Use of a partially-compensated ET layer, with approximately 40 nm of the p-type anode layer remaining uncompensated by the implant, is optimal for maximizing Vbr. Additionally, sputter-deposited SiNx, rather than the more conventional plasma-enhanced chemical vapor deposition (PECVD)-based SiNx, results in less degradation in the on-state performance while providing the same Vbr. The diodes support current densities of 8 kA/cm2 at a forward voltage 5 V, with differential specific on resistances (Ron) of 0.11 mΩcm2. A Baliga's figure-of merit (BFOM) of 13.5 GW/cm2 is obtained; this is among the highest reported BFOM for GaN homoepitaxial pn diodes.
氮化镓衬底上具有离子注入边缘终止和溅射SiNx钝化的高压垂直p-n二极管
报道了具有部分补偿离子注入边缘终端(ET)和溅射SiNx钝化的高电压垂直GaN-on-GaN功率二极管。所测器件的击穿电压(Vbr)超过1.2 kV。通过模拟和实验对离子注入ET进行了优化,并评估了SiNx表面钝化对击穿的影响。使用部分补偿的ET层,其中约40 nm的p型阳极层未被植入物补偿,是最大化Vbr的最佳选择。此外,溅射沉积的SiNx,而不是更传统的基于等离子体增强化学气相沉积(PECVD)的SiNx,在提供相同Vbr的同时,导致更少的状态性能退化。二极管支持电流密度为8 kA/cm2,正向电压为5 V,差分比电阻(Ron)为0.11 mΩcm2。获得了13.5 GW/cm2的Baliga优值(bbfm);这是GaN同外延pn二极管报道的最高BFOM之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信