Integrating IMU and landmark sensors for 3D SLAM and the observability analysis

Farhad Aghili
{"title":"Integrating IMU and landmark sensors for 3D SLAM and the observability analysis","authors":"Farhad Aghili","doi":"10.1109/IROS.2010.5650359","DOIUrl":null,"url":null,"abstract":"This paper investigates 3-dimensional Simultaneous Localization and Mapping (SLAM) and the corresponding observability analysis by fusing data from landmark sensors and a strap-down Inertial Measurement Unit (IMU) in an adaptive Kalman filter (KF). In addition to the vehicle's states and landmark positions, the self-tuning filter estimates the IMU calibration parameters as well as the covariance of the measurement noise. Examining the observability of the 3D SLAM system leads to the the conclusion that the system remains observable provided that at least one of these conditions is satisfied i) two known landmarks of which the connecting line is not collinear with the vector of the acceleration are observed ii) three known landmarks which are not placed in a straight line are observed.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5650359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper investigates 3-dimensional Simultaneous Localization and Mapping (SLAM) and the corresponding observability analysis by fusing data from landmark sensors and a strap-down Inertial Measurement Unit (IMU) in an adaptive Kalman filter (KF). In addition to the vehicle's states and landmark positions, the self-tuning filter estimates the IMU calibration parameters as well as the covariance of the measurement noise. Examining the observability of the 3D SLAM system leads to the the conclusion that the system remains observable provided that at least one of these conditions is satisfied i) two known landmarks of which the connecting line is not collinear with the vector of the acceleration are observed ii) three known landmarks which are not placed in a straight line are observed.
集成IMU和地标传感器的三维SLAM及可观测性分析
本文通过自适应卡尔曼滤波器(KF)融合地标传感器和捷联惯性测量单元(IMU)的数据,研究了三维同步定位与制图(SLAM)及其可观测性分析。除了车辆的状态和地标位置外,自调谐滤波器还估计IMU校准参数以及测量噪声的协方差。检查3D SLAM系统的可观察性得出结论,如果满足以下条件中的至少一个,则该系统保持可观察性i)观察到两个已知地标,其连接线与加速度矢量不共线ii)观察到三个已知地标,它们不在一条直线上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信