A Lyapunov-based current control strategy of three phase Shunt Active Power Filter for harmonic elimination, power-factor correction, and load unbalance compensation
{"title":"A Lyapunov-based current control strategy of three phase Shunt Active Power Filter for harmonic elimination, power-factor correction, and load unbalance compensation","authors":"M. Haddad, S. Rahmani, F. Fnaiech, K. Al-haddad","doi":"10.1109/IECON.2012.6389362","DOIUrl":null,"url":null,"abstract":"This paper proposes a Lyapunov candidate-based control strategy for three-phases Shunt Active Power Filter (SAPF) to compensate harmonics, reactive power and load unbalance under distorted and unbalanced source voltages conditions. This method determines the control law that makes the derivative of the Lyapunov function always negative for all values of the states. The DC bus voltage of the SAPF is maintained constant by using a proportional-integral regulator. Simulation results are presented to validate the effectiveness of the proposed Lyapunov function-based control scheme.","PeriodicalId":196284,"journal":{"name":"IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2012.6389362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper proposes a Lyapunov candidate-based control strategy for three-phases Shunt Active Power Filter (SAPF) to compensate harmonics, reactive power and load unbalance under distorted and unbalanced source voltages conditions. This method determines the control law that makes the derivative of the Lyapunov function always negative for all values of the states. The DC bus voltage of the SAPF is maintained constant by using a proportional-integral regulator. Simulation results are presented to validate the effectiveness of the proposed Lyapunov function-based control scheme.