Pulmonary perfusion and ventricular ejection imaging by frequency domain filtering of EIT (electrical impedance tomography) images.

M Zadehkoochak, B H Blott, T K Hames, R F George
{"title":"Pulmonary perfusion and ventricular ejection imaging by frequency domain filtering of EIT (electrical impedance tomography) images.","authors":"M Zadehkoochak,&nbsp;B H Blott,&nbsp;T K Hames,&nbsp;R F George","doi":"10.1088/0143-0815/13/a/037","DOIUrl":null,"url":null,"abstract":"<p><p>While EIT images can produce clinically useful qualitative information, the extraction of quantitative data is essential in clinical monitoring. In the case of imaging of the thorax the parameters available relate to cardiac activity and pulmonary perfusion. Imaging the relatively small changes in the resistivity of the lungs due to pulmonary perfusion in the presence of noise and the larger ventilation component is difficult. Suggested solutions involve multiple time averaging of cardiac gated data or reconstructed images. The required number of data frames for this type of processing is large (at least 100 cardiac cycles). Because the ventilation and perfusion components of the resistivity signals are well separated in the frequency domain, they can be differentiated by filtering. We report the results of this analysis which requires a data collection period of typically 15 s.</p>","PeriodicalId":77070,"journal":{"name":"Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics","volume":"13 Suppl A ","pages":"191-6"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/0143-0815/13/a/037","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0143-0815/13/a/037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

While EIT images can produce clinically useful qualitative information, the extraction of quantitative data is essential in clinical monitoring. In the case of imaging of the thorax the parameters available relate to cardiac activity and pulmonary perfusion. Imaging the relatively small changes in the resistivity of the lungs due to pulmonary perfusion in the presence of noise and the larger ventilation component is difficult. Suggested solutions involve multiple time averaging of cardiac gated data or reconstructed images. The required number of data frames for this type of processing is large (at least 100 cardiac cycles). Because the ventilation and perfusion components of the resistivity signals are well separated in the frequency domain, they can be differentiated by filtering. We report the results of this analysis which requires a data collection period of typically 15 s.

肺动脉灌注和心室射血成像的频域滤波(电阻抗断层扫描)图像。
虽然EIT图像可以产生临床有用的定性信息,但在临床监测中提取定量数据是必不可少的。在胸部成像的情况下,可用的参数与心脏活动和肺灌注有关。在存在噪声和较大通气成分的情况下,肺灌注引起的肺电阻率相对较小的变化是很难成像的。建议的解决方案包括多次平均心脏门控数据或重建图像。这种类型的处理所需的数据帧数量很大(至少100个心动周期)。由于电阻率信号的通气分量和灌注分量在频域上有很好的分离,可以通过滤波对其进行区分。我们报告这一分析的结果,这需要一个典型的15秒的数据收集周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信