A new kinematic theorem for rotational motion

K. Blankinship
{"title":"A new kinematic theorem for rotational motion","authors":"K. Blankinship","doi":"10.1109/PLANS.2004.1309007","DOIUrl":null,"url":null,"abstract":"The Goodman-Robinson theorem (ASME Jour. of App. Mech., vol.25, p, 210-213, 1968), used to explain kinematic drift in strapdown attitude algorithms due to coning motion, can be thought of as an integral form of the rotation vector differential equation. This theorem states that, in the absence of instrument errors, the delta-theta count of a rate-integrating-type gyro is equal to the time integral of the angular velocity component along the gyro sensitive axis, plus the area that the sensitive axis traces out on a sphere of unit radius. This paper utilizes the Darboux frame from differential geometry to obtain an expression for the area term in the Goodman-Robinson formula. It turns out that this term is equal to the time integral of the component along the gyro sensitive axis of the angular velocity of the angular velocity of the sensitive axis, plus exterior angle terms. The results of this paper provide a geometric explanation of how movement of the direction of the angular velocity vector contributes to kinematic drift.","PeriodicalId":102388,"journal":{"name":"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2004.1309007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Goodman-Robinson theorem (ASME Jour. of App. Mech., vol.25, p, 210-213, 1968), used to explain kinematic drift in strapdown attitude algorithms due to coning motion, can be thought of as an integral form of the rotation vector differential equation. This theorem states that, in the absence of instrument errors, the delta-theta count of a rate-integrating-type gyro is equal to the time integral of the angular velocity component along the gyro sensitive axis, plus the area that the sensitive axis traces out on a sphere of unit radius. This paper utilizes the Darboux frame from differential geometry to obtain an expression for the area term in the Goodman-Robinson formula. It turns out that this term is equal to the time integral of the component along the gyro sensitive axis of the angular velocity of the angular velocity of the sensitive axis, plus exterior angle terms. The results of this paper provide a geometric explanation of how movement of the direction of the angular velocity vector contributes to kinematic drift.
旋转运动的一个新的运动学定理
古德曼-罗宾逊定理(ASME Jour)App. Mech。, vol.25, p, 210-213, 1968),用于解释捷联姿态算法中由于圆锥运动而产生的运动学漂移,可以被认为是旋转矢量微分方程的积分形式。该定理表明,在没有仪器误差的情况下,积分型陀螺的delta-theta计数等于角速度分量沿陀螺敏感轴的时间积分,加上敏感轴在单位半径的球体上所示的面积。本文利用微分几何中的达布坐标系,得到了Goodman-Robinson公式中面积项的表达式。这一项等于沿陀螺敏感轴的角速度分量的时间积分敏感轴的角速度分量,加上外角项。本文的结果为角速度矢量方向的运动如何导致运动漂移提供了几何解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信