Automatic estimation the number of clusters in hierarchical data clustering

C. Zang, Bo Chen
{"title":"Automatic estimation the number of clusters in hierarchical data clustering","authors":"C. Zang, Bo Chen","doi":"10.1109/MESA.2010.5552062","DOIUrl":null,"url":null,"abstract":"Emergent pattern recognition is crucially needed for a real-time monitoring network to recognize emerging behavior of a physical system from sensor measurement data. To achieve effective emergent pattern recognition, one of the challenging problems is to determine the number of data clusters automatically. This paper studies the performance of the model-based clustering approach and using the knee of an evaluation graph for the estimation of the number of clusters. The working principle of these two methods is presented in the article. Both methods have been used for the classification of damage patterns for a benchmark civil structure. The performance of these two methods on determining the number of clusters and classification success rate is discussed.","PeriodicalId":406358,"journal":{"name":"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2010.5552062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Emergent pattern recognition is crucially needed for a real-time monitoring network to recognize emerging behavior of a physical system from sensor measurement data. To achieve effective emergent pattern recognition, one of the challenging problems is to determine the number of data clusters automatically. This paper studies the performance of the model-based clustering approach and using the knee of an evaluation graph for the estimation of the number of clusters. The working principle of these two methods is presented in the article. Both methods have been used for the classification of damage patterns for a benchmark civil structure. The performance of these two methods on determining the number of clusters and classification success rate is discussed.
分层数据聚类中聚类个数的自动估计
紧急模式识别是实时监测网络从传感器测量数据中识别物理系统新行为的关键。为了实现有效的紧急模式识别,自动确定数据簇的数量是一个具有挑战性的问题。本文研究了基于模型的聚类方法的性能,并利用评价图的膝部来估计聚类的数量。本文介绍了这两种方法的工作原理。将这两种方法应用于某基准土建结构的损伤模式分类。讨论了这两种方法在确定聚类数量和分类成功率方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信