{"title":"An algorithm for solving of Euler parameters differential equations system","authors":"J. Rédl","doi":"10.15414/meraa.2021.07.01.01-09","DOIUrl":null,"url":null,"abstract":"The design an optimal numerical method for solving a system of ordinary differential equations simultaneously is described in this paper. System of differential equations was represented by a system of linear ordinary differential equations of Euler’s parameters called quaternions. The components of angular velocity were obtained by the experimental way. The angular velocity of the centre of gravity was determined from sensors of acceleration located in the plane of the centre of gravity of the machine. The used numerical method for solving was a fourth-order Runge-Kutta method. The stability of solving was based on the orthogonality of a direct cosine matrix. The numerical process was controlled on every step in numerical integration. The algorithm was designed in the C# programming language.","PeriodicalId":356304,"journal":{"name":"Mathematics in Education, Research and Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Education, Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15414/meraa.2021.07.01.01-09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The design an optimal numerical method for solving a system of ordinary differential equations simultaneously is described in this paper. System of differential equations was represented by a system of linear ordinary differential equations of Euler’s parameters called quaternions. The components of angular velocity were obtained by the experimental way. The angular velocity of the centre of gravity was determined from sensors of acceleration located in the plane of the centre of gravity of the machine. The used numerical method for solving was a fourth-order Runge-Kutta method. The stability of solving was based on the orthogonality of a direct cosine matrix. The numerical process was controlled on every step in numerical integration. The algorithm was designed in the C# programming language.