A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT)

E. Arenson, G. Karabatsos
{"title":"A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT)","authors":"E. Arenson, G. Karabatsos","doi":"10.22237/JMASM/1531318047","DOIUrl":null,"url":null,"abstract":"Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model for dichotomous items, which constructs monotone item characteristic (step) curves by a finite mixture of beta distributions, which can support the entire space of monotone curves to any desired degree of accuracy. A simple adaptive random-walk Metropolis-Hastings algorithm is proposed to estimate the posterior distribution of the model parameters. The Bayesian IRT model is illustrated through the analysis of item response data from a 2015 TIMSS test of math performance.","PeriodicalId":153695,"journal":{"name":"Cognition in Mathematics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1531318047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model for dichotomous items, which constructs monotone item characteristic (step) curves by a finite mixture of beta distributions, which can support the entire space of monotone curves to any desired degree of accuracy. A simple adaptive random-walk Metropolis-Hastings algorithm is proposed to estimate the posterior distribution of the model parameters. The Bayesian IRT model is illustrated through the analysis of item response data from a 2015 TIMSS test of math performance.
非参数IRT的贝叶斯-混合模型(BBM-IRT)
项目反应模型通常假设项目特征(步长)曲线遵循logistic或正态累积分布函数,这是人测试能力的严格单调函数。对于真实的项目响应数据,这样的假设可能过于严格。我们提出了一个简单而灵活的二分类项目贝叶斯非参数IRT模型,该模型通过有限的beta分布混合来构建单调项目特征(步长)曲线,该模型可以支持单调曲线的整个空间,达到任何期望的精度程度。提出了一种简单的自适应随机漫步Metropolis-Hastings算法来估计模型参数的后验分布。贝叶斯IRT模型通过分析2015年TIMSS数学成绩测试的项目反应数据来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信