{"title":"A Bayesian Beta-Mixture Model for Nonparametric IRT (BBM-IRT)","authors":"E. Arenson, G. Karabatsos","doi":"10.22237/JMASM/1531318047","DOIUrl":null,"url":null,"abstract":"Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model for dichotomous items, which constructs monotone item characteristic (step) curves by a finite mixture of beta distributions, which can support the entire space of monotone curves to any desired degree of accuracy. A simple adaptive random-walk Metropolis-Hastings algorithm is proposed to estimate the posterior distribution of the model parameters. The Bayesian IRT model is illustrated through the analysis of item response data from a 2015 TIMSS test of math performance.","PeriodicalId":153695,"journal":{"name":"Cognition in Mathematics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1531318047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model for dichotomous items, which constructs monotone item characteristic (step) curves by a finite mixture of beta distributions, which can support the entire space of monotone curves to any desired degree of accuracy. A simple adaptive random-walk Metropolis-Hastings algorithm is proposed to estimate the posterior distribution of the model parameters. The Bayesian IRT model is illustrated through the analysis of item response data from a 2015 TIMSS test of math performance.