Characterization of Multiple 3D LiDARs for Localization and Mapping Performance using the NDT Algorithm

Alexander Carballo, Abraham Monrroy, D. Wong, Patiphon Narksri, Jacob Lambert, Yuki Kitsukawa, E. Takeuchi, Shinpei Kato, K. Takeda
{"title":"Characterization of Multiple 3D LiDARs for Localization and Mapping Performance using the NDT Algorithm","authors":"Alexander Carballo, Abraham Monrroy, D. Wong, Patiphon Narksri, Jacob Lambert, Yuki Kitsukawa, E. Takeuchi, Shinpei Kato, K. Takeda","doi":"10.1109/ivworkshops54471.2021.9669244","DOIUrl":null,"url":null,"abstract":"In this work, we present a detailed comparison of ten different 3D LiDAR sensors for the tasks of mapping and vehicle localization, using as common reference the Normal Distributions Transform (NDT) algorithm implemented in the self-driving open source platform Autoware. LiDAR data used in this study is a subset of our LiDAR Benchmarking and Reference (LIBRE) dataset, captured independently from each sensor, from a vehicle driven on public urban roads multiple times, at different times of the day. In this study, we analyze the performance and characteristics of each LiDAR for the tasks of (1) 3D mapping including an assessment map quality based on mean map entropy, and (2) 6-DOF localization using a ground truth reference map.","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we present a detailed comparison of ten different 3D LiDAR sensors for the tasks of mapping and vehicle localization, using as common reference the Normal Distributions Transform (NDT) algorithm implemented in the self-driving open source platform Autoware. LiDAR data used in this study is a subset of our LiDAR Benchmarking and Reference (LIBRE) dataset, captured independently from each sensor, from a vehicle driven on public urban roads multiple times, at different times of the day. In this study, we analyze the performance and characteristics of each LiDAR for the tasks of (1) 3D mapping including an assessment map quality based on mean map entropy, and (2) 6-DOF localization using a ground truth reference map.
使用NDT算法对多个3D激光雷达进行定位和映射性能的表征
在这项工作中,我们使用自动驾驶开源平台Autoware中实现的正态分布变换(NDT)算法作为通用参考,详细比较了用于地图和车辆定位任务的十种不同3D LiDAR传感器。本研究中使用的激光雷达数据是LiDAR基准和参考(LIBRE)数据集的一个子集,这些数据独立于每个传感器,从一天中不同时间多次在公共城市道路上行驶的车辆中捕获。在本研究中,我们分析了每个激光雷达在以下任务中的性能和特点:(1)三维测绘,包括基于平均地图熵的评估地图质量;(2)使用地面真实度参考地图的6自由度定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信