Autonomous vision-based exploration and mapping using hybrid maps and Rao-Blackwellised particle filters

Robert Sim, J. Little
{"title":"Autonomous vision-based exploration and mapping using hybrid maps and Rao-Blackwellised particle filters","authors":"Robert Sim, J. Little","doi":"10.1109/IROS.2006.282485","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of exploring and mapping an unknown environment using a robot equipped with a stereo vision sensor. The main contribution of our work is a fully automatic mapping system that operates without the use of active ranger sensors (such as laser or sonic transducers), can operate in real-time and can consistently produce accurate maps of large-scale environments. Our approach implements a Rao-Blackwellised particle filter (RBPF) to solve the simultaneous localization and mapping problem and uses efficient data structures for real-time data association, mapping, and spatial reasoning. We employ a hybrid map representation that infers 3D point landmarks from image features to achieve precise localization, coupled with occupancy grids for safe navigation. This paper describes our framework and implementation, and presents our exploration method, and experimental results illustrating the functionality of the system","PeriodicalId":237562,"journal":{"name":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2634 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2006.282485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

This paper addresses the problem of exploring and mapping an unknown environment using a robot equipped with a stereo vision sensor. The main contribution of our work is a fully automatic mapping system that operates without the use of active ranger sensors (such as laser or sonic transducers), can operate in real-time and can consistently produce accurate maps of large-scale environments. Our approach implements a Rao-Blackwellised particle filter (RBPF) to solve the simultaneous localization and mapping problem and uses efficient data structures for real-time data association, mapping, and spatial reasoning. We employ a hybrid map representation that infers 3D point landmarks from image features to achieve precise localization, coupled with occupancy grids for safe navigation. This paper describes our framework and implementation, and presents our exploration method, and experimental results illustrating the functionality of the system
使用混合地图和rao - blackwell化粒子过滤器的自主视觉探索和绘图
本文研究了利用配备立体视觉传感器的机器人探索和绘制未知环境的问题。我们工作的主要贡献是一个全自动制图系统,该系统无需使用主动测距传感器(如激光或声波换能器),可以实时操作,并且可以始终如一地生成大规模环境的精确地图。我们的方法实现了一个rao - blackwell化粒子滤波(RBPF)来解决同时定位和映射问题,并使用高效的数据结构进行实时数据关联、映射和空间推理。我们采用混合地图表示,从图像特征中推断3D点地标以实现精确定位,并结合占用网格进行安全导航。本文描述了我们的框架和实现,给出了我们的探索方法,以及说明系统功能的实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信