Lane mark segmentation method based on maximum entropy

Yu Tianhong, Wang Rongben, Jin Lisheng, Chu Jiangwei, Guo Lie
{"title":"Lane mark segmentation method based on maximum entropy","authors":"Yu Tianhong, Wang Rongben, Jin Lisheng, Chu Jiangwei, Guo Lie","doi":"10.1109/ITSC.2005.1520137","DOIUrl":null,"url":null,"abstract":"In order to realize lane mark identifying and tracking on such conditions as uneven road surface materials and different illumination etc, this paper proposes a new method which combines an image segmentation technique based on maximum entropy with a bi-normalized adjustable template. First, applying image window variation technology, this method first realizes the better road image segmentation based on maximize one-dimension entropy. Second, lane mark parameters can be acquired based on the bi-normalized adjustable template. Finally lane mark real-time tracking is realized by applying trapezia AOI method.","PeriodicalId":153203,"journal":{"name":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","volume":"3283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2005.1520137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In order to realize lane mark identifying and tracking on such conditions as uneven road surface materials and different illumination etc, this paper proposes a new method which combines an image segmentation technique based on maximum entropy with a bi-normalized adjustable template. First, applying image window variation technology, this method first realizes the better road image segmentation based on maximize one-dimension entropy. Second, lane mark parameters can be acquired based on the bi-normalized adjustable template. Finally lane mark real-time tracking is realized by applying trapezia AOI method.
基于最大熵的车道标记分割方法
为了在路面材料不平整、光照不同等条件下实现车道标记的识别与跟踪,提出了一种将基于最大熵的图像分割技术与双归一化可调模板相结合的车道标记识别与跟踪方法。该方法首先应用图像窗口变分技术,实现了基于一维熵最大化的道路图像分割。其次,基于双归一化可调模板获取车道标记参数;最后利用梯形AOI方法实现车道标记的实时跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信