Yu Tianhong, Wang Rongben, Jin Lisheng, Chu Jiangwei, Guo Lie
{"title":"Lane mark segmentation method based on maximum entropy","authors":"Yu Tianhong, Wang Rongben, Jin Lisheng, Chu Jiangwei, Guo Lie","doi":"10.1109/ITSC.2005.1520137","DOIUrl":null,"url":null,"abstract":"In order to realize lane mark identifying and tracking on such conditions as uneven road surface materials and different illumination etc, this paper proposes a new method which combines an image segmentation technique based on maximum entropy with a bi-normalized adjustable template. First, applying image window variation technology, this method first realizes the better road image segmentation based on maximize one-dimension entropy. Second, lane mark parameters can be acquired based on the bi-normalized adjustable template. Finally lane mark real-time tracking is realized by applying trapezia AOI method.","PeriodicalId":153203,"journal":{"name":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","volume":"3283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2005.1520137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In order to realize lane mark identifying and tracking on such conditions as uneven road surface materials and different illumination etc, this paper proposes a new method which combines an image segmentation technique based on maximum entropy with a bi-normalized adjustable template. First, applying image window variation technology, this method first realizes the better road image segmentation based on maximize one-dimension entropy. Second, lane mark parameters can be acquired based on the bi-normalized adjustable template. Finally lane mark real-time tracking is realized by applying trapezia AOI method.