Anomaly Detection Using Motion Patterns Computed from Optical Flow

R. Parvathy, Soumya Thilakan, Meenu Joy, K. Sameera
{"title":"Anomaly Detection Using Motion Patterns Computed from Optical Flow","authors":"R. Parvathy, Soumya Thilakan, Meenu Joy, K. Sameera","doi":"10.1109/ICACC.2013.18","DOIUrl":null,"url":null,"abstract":"A method is proposed for detecting anomalies in extremely crowded scenes using analysis of motion patterns. The optical flow is computed by initializing the video as a dynamical system. Optical flow is a vector field where each vector represents the direction and amount of motion. This generated model can be used to define trajectories. Then these trajectories are clustered hierarchically using spatial and temporal information for learning the motion patterns. Based on the learned statistical motion patterns, anomalies are detected using statistical methods.","PeriodicalId":109537,"journal":{"name":"2013 Third International Conference on Advances in Computing and Communications","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third International Conference on Advances in Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACC.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A method is proposed for detecting anomalies in extremely crowded scenes using analysis of motion patterns. The optical flow is computed by initializing the video as a dynamical system. Optical flow is a vector field where each vector represents the direction and amount of motion. This generated model can be used to define trajectories. Then these trajectories are clustered hierarchically using spatial and temporal information for learning the motion patterns. Based on the learned statistical motion patterns, anomalies are detected using statistical methods.
利用光流计算的运动模式进行异常检测
提出了一种基于运动模式分析的极端拥挤场景异常检测方法。通过将视频初始化为动态系统来计算光流。光流是一个矢量场,其中每个矢量表示运动的方向和量。这个生成的模型可以用来定义轨迹。然后利用空间和时间信息对这些轨迹进行分层聚类,以学习运动模式。基于学习到的统计运动模式,使用统计方法检测异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信