{"title":"Fault Diagnosis for Wireless Sensor Network's Node Based on Hamming Neural Network and Rough Set","authors":"Lin Lei, Houjun Wang, Chuanhua Dai","doi":"10.1109/RAMECH.2008.4681504","DOIUrl":null,"url":null,"abstract":"To accurately diagnose node fault in wireless sensor network (WSN) can improve long-distance service of nodes in WSN, assure reliability of information transfer and prolong lifetime of WSN. In this paper, a novel method of fault diagnosis for node of WSN was brought forward. First, attribute reduction for decision-making of fault diagnosis could be founded based discernibility matrix in rough set theory. Furthermore, a set of model for node's fault diagnosis in WSN could be built through classification algorithm based on attribute matching. Finally, a set of method for fault classification was founded by hamming network. The result of simulation shows that characteristics of this method are as follows: high veracity of diagnosis, a little expenditure of communication, low energy consumption and strong robustness.","PeriodicalId":320560,"journal":{"name":"2008 IEEE Conference on Robotics, Automation and Mechatronics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Conference on Robotics, Automation and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMECH.2008.4681504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
To accurately diagnose node fault in wireless sensor network (WSN) can improve long-distance service of nodes in WSN, assure reliability of information transfer and prolong lifetime of WSN. In this paper, a novel method of fault diagnosis for node of WSN was brought forward. First, attribute reduction for decision-making of fault diagnosis could be founded based discernibility matrix in rough set theory. Furthermore, a set of model for node's fault diagnosis in WSN could be built through classification algorithm based on attribute matching. Finally, a set of method for fault classification was founded by hamming network. The result of simulation shows that characteristics of this method are as follows: high veracity of diagnosis, a little expenditure of communication, low energy consumption and strong robustness.