Evaluation on the probing error of a micro-coordinate measuring machine

Z. Chao, S. L. Tan, G. Xu
{"title":"Evaluation on the probing error of a micro-coordinate measuring machine","authors":"Z. Chao, S. L. Tan, G. Xu","doi":"10.1117/12.814519","DOIUrl":null,"url":null,"abstract":"Micro-coordinate measuring machines (micro-CMMs) with small probes (φ300 μm or smaller), low probing force and high accuracy working stage have been developed in recent years for three-dimensional (3D) measurement of micro structures. In general, the performance of the micro-CMM depends on the accuracy of its working stage and the probing system. The accuracy of the working stage of a micro CMM can be assessed by laser interferometry to the order of a few tens of nanometers. However, the accuracy of its probing system is difficult to assess due to the small probe size and low probing force. The probing error of a micro-CMM (model F25 by Carl Zeiss) was investigated at our laboratory. The probes used in the system are based on silicon membrane and piezo-resistive elements. The stylus size of the probes ranges from φ120 μm to φ300 μm. The effect of various sources, including the stylus size, on the probing error of the system was evaluated by means of certified precision spheres with reference to ISO 10360-2:2001. Based on the results obtained, possible ways to reduce the probing error are discussed. This is illustrated by the uncertainty analysis of the diameter measurements of a ring gauge using the system.","PeriodicalId":191475,"journal":{"name":"International Symposium on Laser Metrology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Laser Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.814519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Micro-coordinate measuring machines (micro-CMMs) with small probes (φ300 μm or smaller), low probing force and high accuracy working stage have been developed in recent years for three-dimensional (3D) measurement of micro structures. In general, the performance of the micro-CMM depends on the accuracy of its working stage and the probing system. The accuracy of the working stage of a micro CMM can be assessed by laser interferometry to the order of a few tens of nanometers. However, the accuracy of its probing system is difficult to assess due to the small probe size and low probing force. The probing error of a micro-CMM (model F25 by Carl Zeiss) was investigated at our laboratory. The probes used in the system are based on silicon membrane and piezo-resistive elements. The stylus size of the probes ranges from φ120 μm to φ300 μm. The effect of various sources, including the stylus size, on the probing error of the system was evaluated by means of certified precision spheres with reference to ISO 10360-2:2001. Based on the results obtained, possible ways to reduce the probing error are discussed. This is illustrated by the uncertainty analysis of the diameter measurements of a ring gauge using the system.
微坐标测量机探测误差的评价
微坐标测量机(micro- cmms)是近年来发展起来的一种具有小探头(φ300 μm或更小)、低探头力和高精度工作台的微结构三维测量技术。一般来说,微型三坐标测量机的性能取决于其工作台和探测系统的精度。利用激光干涉测量技术,可以对微型三坐标测量机工作台的精度进行几十纳米量级的评定。然而,由于探针尺寸小,探测力小,其探测系统的精度难以评估。本文对蔡司F25型微型三坐标测量机的探测误差进行了研究。该系统中使用的探头基于硅膜和压阻元件。探头的触头尺寸范围为φ120 μm ~ φ300 μm。参考ISO 10360-2:2001,通过认证的精密球体评估了各种来源(包括触控笔尺寸)对系统探测误差的影响。在此基础上,讨论了减小探测误差的可能方法。用该系统测量环规直径的不确定度分析说明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信