Matrix algebra and eigenvalues for the bead/spring model of polymer solutions

J. Fong, A. Peterlin
{"title":"Matrix algebra and eigenvalues for the bead/spring model of polymer solutions","authors":"J. Fong, A. Peterlin","doi":"10.6028/JRES.080B.029","DOIUrl":null,"url":null,"abstract":"Some twenty years ago, Zimm [1] 1 formulated ~ linear, second-order partial differential eq uation for a distribution function IjJ which depends on time and ~N + 1) coordinates Xo. Yo. Zoo .. , , XN, YN, Z N, of the N + 1 beads, for modeling the bulk behavior of very dilute polymer s0lutions under the influe nce of external force, Brownian motion, and hydrodynamic interaction among the beads of the neckJace model. The mechanical model for each polymer molec ule is that of a c hain of N identical, ideally elastic segments joining N + 1 identical beads with comple te flexibility at each bead. Two length parameters are of interest in thi s model: ah, the so-called hydrodynamic radius of the bead, and bo, the root mean square of the segment length. The ratio a of the two length parameters (a = a,/ bo), and the number N of elastic segments completely charac terize the mathematical problem","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.080B.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Some twenty years ago, Zimm [1] 1 formulated ~ linear, second-order partial differential eq uation for a distribution function IjJ which depends on time and ~N + 1) coordinates Xo. Yo. Zoo .. , , XN, YN, Z N, of the N + 1 beads, for modeling the bulk behavior of very dilute polymer s0lutions under the influe nce of external force, Brownian motion, and hydrodynamic interaction among the beads of the neckJace model. The mechanical model for each polymer molec ule is that of a c hain of N identical, ideally elastic segments joining N + 1 identical beads with comple te flexibility at each bead. Two length parameters are of interest in thi s model: ah, the so-called hydrodynamic radius of the bead, and bo, the root mean square of the segment length. The ratio a of the two length parameters (a = a,/ bo), and the number N of elastic segments completely charac terize the mathematical problem
聚合物溶液的头/弹簧模型的矩阵代数和特征值
大约在二十年前,Zimm bbb1为一个分布函数IjJ(依赖于时间和~N + 1)坐标Xo)建立了一个线性二阶偏微分方程。哟。动物园……,, XN, YN, zn,用于模拟非常稀的聚合物溶液在外力,布朗运动和颈部jace模型珠间流体动力相互作用影响下的体积行为。每个聚合物分子的力学模型是由N个相同的c链组成的,理想的弹性片段连接N + 1个相同的珠粒,每个珠粒具有完全的柔韧性。在这个模型中有两个长度参数很重要:ah,即所谓的水动力半径,bo,即线段长度的均方根。两个长度参数的比值a (a = a,/ bo)和弹性段的个数N完全表征了该数学问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信