Learning Deep Stochastic Optimal Control Policies Using Forward-Backward SDEs

Ziyi Wang, M. Pereira, Evangelos A. Theodorou
{"title":"Learning Deep Stochastic Optimal Control Policies Using Forward-Backward SDEs","authors":"Ziyi Wang, M. Pereira, Evangelos A. Theodorou","doi":"10.15607/RSS.2019.XV.070","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new methodology for decision-making under uncertainty using recent advancements in the areas of nonlinear stochastic optimal control theory, applied mathematics, and machine learning. Grounded on the fundamental relation between certain nonlinear partial differential equations and forward-backward stochastic differential equations, we develop a control framework that is scalable and applicable to general classes of stochastic systems and decision-making problem formulations in robotics and autonomy. The proposed deep neural network architectures for stochastic control consist of recurrent and fully connected layers. The performance and scalability of the aforementioned algorithm are investigated in three non-linear systems in simulation with and without control constraints. We conclude with a discussion on future directions and their implications to robotics.","PeriodicalId":307591,"journal":{"name":"Robotics: Science and Systems XV","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2019.XV.070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

In this paper we propose a new methodology for decision-making under uncertainty using recent advancements in the areas of nonlinear stochastic optimal control theory, applied mathematics, and machine learning. Grounded on the fundamental relation between certain nonlinear partial differential equations and forward-backward stochastic differential equations, we develop a control framework that is scalable and applicable to general classes of stochastic systems and decision-making problem formulations in robotics and autonomy. The proposed deep neural network architectures for stochastic control consist of recurrent and fully connected layers. The performance and scalability of the aforementioned algorithm are investigated in three non-linear systems in simulation with and without control constraints. We conclude with a discussion on future directions and their implications to robotics.
利用前向向后SDEs学习深度随机最优控制策略
在本文中,我们利用非线性随机最优控制理论、应用数学和机器学习领域的最新进展,提出了一种新的不确定性决策方法。基于某些非线性偏微分方程和前向倒向随机微分方程之间的基本关系,我们开发了一个可扩展的控制框架,适用于一般类型的随机系统和机器人和自治中的决策问题公式。所提出的用于随机控制的深度神经网络结构由循环层和全连接层组成。在有控制约束和无控制约束的三个非线性系统中,对上述算法的性能和可扩展性进行了仿真研究。最后,我们讨论了未来的发展方向及其对机器人技术的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信