Accuracy evaluation of threshold rainfall impacting pedestrian using ROC

Kyungsu Kang Dongho Kim Byungsik Choo
{"title":"Accuracy evaluation of threshold rainfall impacting pedestrian using ROC","authors":"Kyungsu Kang Dongho Kim Byungsik Choo","doi":"10.3741/JKWRA.2020.53.12.1173","DOIUrl":null,"url":null,"abstract":"Recently, as local heavy rains occur frequently in a short period of time, economic and social impacts are increasing beyond the simple primary damage. In advanced meteorologically advanced countries, realistic and reliable impact forecasts are conducted by analyzing socio-economic impacts, not information transmission as simple weather forecasts. In this paper, the degree of flooding was derived using the Spatial Runoff Assessment Tool (S-RAT) and FLO-2D models to calculate the threshold rainfall that can affect human walking, and the threshold rainfall of the concept of Grid to Grid (G2G) was calculated. In addition, although it was used a lot in the medical field in the past, a quantitative accuracy analysis was performed through the ROC analysis technique, which is widely used in natural phenomena such as drought or flood and machine learning. As a result of the analysis, the results of the time period similar to that of the actual and simulated immersion were obtained, and as a result of the ROC (Receiver Operating Characteristic) curve, the adequacy of the fair stage was secured with more than 0.7.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Water Resources Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3741/JKWRA.2020.53.12.1173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, as local heavy rains occur frequently in a short period of time, economic and social impacts are increasing beyond the simple primary damage. In advanced meteorologically advanced countries, realistic and reliable impact forecasts are conducted by analyzing socio-economic impacts, not information transmission as simple weather forecasts. In this paper, the degree of flooding was derived using the Spatial Runoff Assessment Tool (S-RAT) and FLO-2D models to calculate the threshold rainfall that can affect human walking, and the threshold rainfall of the concept of Grid to Grid (G2G) was calculated. In addition, although it was used a lot in the medical field in the past, a quantitative accuracy analysis was performed through the ROC analysis technique, which is widely used in natural phenomena such as drought or flood and machine learning. As a result of the analysis, the results of the time period similar to that of the actual and simulated immersion were obtained, and as a result of the ROC (Receiver Operating Characteristic) curve, the adequacy of the fair stage was secured with more than 0.7.
用ROC评价阈值降雨对行人影响的准确性
最近,由于局部暴雨在短时间内频繁发生,经济和社会影响正在增加,超出了简单的初级损害。在气象发达的国家,不像单纯的天气预报那样传递信息,而是通过分析社会经济影响来进行现实可靠的影响预报。本文利用空间径流评估工具(S-RAT)和FLO-2D模型推导洪涝程度,计算影响人类行走的阈值雨量,并计算栅格到栅格(G2G)概念下的阈值雨量。此外,虽然过去在医学领域使用较多,但通过ROC分析技术进行定量精度分析,该技术广泛应用于干旱或洪水等自然现象和机器学习。通过分析,获得了与实际浸泡和模拟浸泡相似的时间段结果,并且根据ROC (Receiver Operating Characteristic)曲线,公平阶段的充分性得到了0.7以上的保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信